2 research outputs found

    Effects of Post-Ruminal Urea Supplementation during the Seasonal Period on Performance and Rumen Microbiome of Rearing Grazing Nellore Cattle

    No full text
    The objective was to evaluate the effects of urea with post-ruminal absorption in the supplementation of growing Nellore cattle reared on pasture during a seasonal period. For the study, two experiments were conducted. In experiment 1, rumen and blood parameters were evaluated using eight rumen-cannulated Nellore bulls with initial body weight (BW) of 763 ± 44 kg, distributed in a double Latin square 4 × 4. In experiment 2, 120 Nellore steers with initial BW of 380 ± 35 kg were used for performance evaluation, distributed in a randomized block design (blocking factor or initial BW). The evaluated treatments were 1: (TP-U) (control) = supplement with 24% crude protein (CP) containing urea as a source of non-protein nitrogen (NPN; 3%) and soybean meal, 2: (TP-PRU) = 24% CP supplement containing post-ruminal urea (PRU; 3.6%) and soybean meal; 3: (NPN-U-PRU) = 24% CP supplement containing urea + post-ruminal urea (U = 3% and PRU = 3.9%), without soybean meal; 4: (NPN-PRU) = supplement with 24% CP containing post-ruminal urea (7.5%), without soybean meal. The supplement was offered at 3 g/kg BW per animal, daily, once a day. All animals were kept on Urochloa brizantha cv. Marandu pasture. Statistical analyses were performed using the SAS PROC MIXED, and the data were evaluated by the following contrasts: C1 = TP-U/TP-PRU vs. NPN-U-PRU/NPN-PRU (Soybean meal replacement by NPN); C2 = TP-U vs. TP-PRU (conventional urea vs. post-immune urea); C3 = NPN-U-PRU vs. NPN-PRU (low and high post-ruminal urea-PRU level). The digestibility of dry matter, organic matter, and NDF was lower when soybean meal was replaced by non-protein nitrogen, also being different between the levels of post-ruminal urea used in the supplement. Ruminal pH was different when soybean meal was replaced by NPN (p = 0.003). Total concentration of short-chain fatty acids, concentrations of isobutyrate (p = 0.003), valerate (p = 0.001), and isovalerate (p = 0.001) were different, and blood urea was different when soybean meal was replaced by NPN (p = 0.006). Simpson’s diversity index was higher in the rumen of animals supplemented with TP-U than in those supplemented with TP-PRU (p = 0.05). A total of 27 phyla, 234 families, and 488 genera were identified. Nitrospirota and Gemmatimonadota phyla were detected just in the rumen of steers supplemented with TP-PRU. The performance (final BW, weight gain and gain per area) of the animals was different, being higher (p = 0.04) in animals supplemented with soybean meal, compared to NPN. The removal of soybean meal from the supplement and its replacement with either conventional urea plus post-ruminal urea or only post-ruminal urea compromises the performance of the animals. The lower the post-ruminal urea inclusion level, the lower the apparent digestibility of dry matter, organic matter, and NDF, when compared to animals supplemented with higher levels

    Effect of Post-Ruminal Urea Supply on Growth Performance of Grazing Nellore Young Bulls at Dry Season

    No full text
    The objective of this study was to evaluate the effect of the use of post-ruminal urea on performance, nitrogen metabolism and the ruminal environment of Nellore cattle reared on pasture during the dry season. In experiment 1 (Exp. 1), nine ruminal-cannulated Nellore steers, 30 ± 2 months old (651 ± 45 kg body weight (BW)), were allotted to a 3 × 3 Latin triple square. In experiment 2 (Exp. 2), 84 Nellore bulls, 18 ± 3 months old (315 ± 84 kg BW), were distributed in complete randomized blocks, by initial BW. Protein supplements were supplied daily, in the amount of 2 g/kg BW, and consisted of either CONT: protein + conventional urea (50% CP), PRU: protein + post ruminal urea (50% CP) and U + PRU: protein + urea conventional + post-ruminal urea (70% CP). The paddocks were composed of Urochloa brizantha cv. Marandu grass. In Exp. 1, there was no treatment effect for DM, OM, NDF, forage intake, and CP, but there was a higher intake for PRU (p p = 0.001). There was no effect on ruminal pH or NH3-N concentration (p ≥ 0.232), but there was an interaction between treatment and time for them (p p p = 0.049) was found for the propionate proportion, with a higher proportion in the CONT. Nitrogen intake was consequently lower for the CONT and higher urinary excretion for the U + PRU (p = 0.002). Animals supplemented with CONT showed a tendency to have more Bacteria and fewer Archaea (p = 0.086). In Exp. 2, there was a treatment effect for the disappearance rate of the supplement (p p = 0.311). The use of post-ruminal urea alters the microbial population, but does not affect performance. Therefore, supplementation with post-ruminal urea presented similar results compared to conventional urea. Ruminal and blood parameters and animal performance were not influenced by treatments
    corecore