3,318 research outputs found
Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics
We recall that the full susceptibility series of the Ising model, modulo
powers of the prime 2, reduce to algebraic functions. We also recall the
non-linear polynomial differential equation obtained by Tutte for the
generating function of the q-coloured rooted triangulations by vertices, which
is known to have algebraic solutions for all the numbers of the form , the holonomic status of the q= 4 being unclear. We focus on the
analysis of the q= 4 case, showing that the corresponding series is quite
certainly non-holonomic. Along the line of a previous work on the
susceptibility of the Ising model, we consider this q=4 series modulo the first
eight primes 2, 3, ... 19, and show that this (probably non-holonomic) function
reduces, modulo these primes, to algebraic functions. We conjecture that this
probably non-holonomic function reduces to algebraic functions modulo (almost)
every prime, or power of prime numbers. This raises the question to see whether
such remarkable non-holonomic functions can be seen as ratio of diagonals of
rational functions, or algebraic, functions of diagonals of rational functions.Comment: 27 page
Scaling functions in the square Ising model
We show and give the linear differential operators of
order q= n^2/4+n+7/8+(-1)^n/8, for the integrals which appear in the
two-point correlation scaling function of Ising model . The integrals are given in expansion around r= 0 in the basis of the formal
solutions of with transcendental combination
coefficients. We find that the expression is a solution
of the Painlev\'e VI equation in the scaling limit. Combinations of the
(analytic at ) solutions of sum to .
We show that the expression is the scaling limit of the
correlation function and . The differential Galois
groups of the factors occurring in the operators are
given.Comment: 26 page
Diagonals of rational functions, pullbacked 2F1 hypergeometric functions and modular forms (unabrigded version)
We recall that diagonals of rational functions naturally occur in lattice
statistical mechanics and enumerative combinatorics. We find that a
seven-parameter rational function of three variables with a numerator equal to
one (reciprocal of a polynomial of degree two at most) can be expressed as a
pullbacked 2F1 hypergeometric function. This result can be seen as the simplest
non-trivial family of diagonals of rational functions. We focus on some
subcases such that the diagonals of the corresponding rational functions can be
written as a pullbacked 2F1 hypergeometric function with two possible rational
functions pullbacks algebraically related by modular equations, thus showing
explicitely that the diagonal is a modular form. We then generalise this result
to eight, nine and ten parameters families adding some selected cubic terms at
the denominator of the rational function defining the diagonal. We finally show
that each of these previous rational functions yields an infinite number of
rational functions whose diagonals are also pullbacked 2F1 hypergeometric
functions and modular forms.Comment: 39 page
Landau singularities and singularities of holonomic integrals of the Ising class
We consider families of multiple and simple integrals of the ``Ising class''
and the linear ordinary differential equations with polynomial coefficients
they are solutions of. We compare the full set of singularities given by the
roots of the head polynomial of these linear ODE's and the subset of
singularities occurring in the integrals, with the singularities obtained from
the Landau conditions. For these Ising class integrals, we show that the Landau
conditions can be worked out, either to give the singularities of the
corresponding linear differential equation or the singularities occurring in
the integral. The singular behavior of these integrals is obtained in the
self-dual variable , with , where is the
usual Ising model coupling constant. Switching to the variable , we show
that the singularities of the analytic continuation of series expansions of
these integrals actually break the Kramers-Wannier duality. We revisit the
singular behavior (J. Phys. A {\bf 38} (2005) 9439-9474) of the third
contribution to the magnetic susceptibility of Ising model at the
points and show that is not singular at the
corresponding points inside the unit circle , while its analytical
continuation in the variable is actually singular at the corresponding
points oustside the unit circle ().Comment: 34 pages, 1 figur
Canonical decomposition of linear differential operators with selected differential Galois groups
We revisit an order-six linear differential operator having a solution which
is a diagonal of a rational function of three variables. Its exterior square
has a rational solution, indicating that it has a selected differential Galois
group, and is actually homomorphic to its adjoint. We obtain the two
corresponding intertwiners giving this homomorphism to the adjoint. We show
that these intertwiners are also homomorphic to their adjoint and have a simple
decomposition, already underlined in a previous paper, in terms of order-two
self-adjoint operators. From these results, we deduce a new form of
decomposition of operators for this selected order-six linear differential
operator in terms of three order-two self-adjoint operators. We then generalize
the previous decomposition to decompositions in terms of an arbitrary number of
self-adjoint operators of the same parity order. This yields an infinite family
of linear differential operators homomorphic to their adjoint, and, thus, with
a selected differential Galois group. We show that the equivalence of such
operators is compatible with these canonical decompositions. The rational
solutions of the symmetric, or exterior, squares of these selected operators
are, noticeably, seen to depend only on the rightmost self-adjoint operator in
the decomposition. These results, and tools, are applied on operators of large
orders. For instance, it is seen that a large set of (quite massive) operators,
associated with reflexive 4-polytopes defining Calabi-Yau 3-folds, obtained
recently by P. Lairez, correspond to a particular form of the decomposition
detailed in this paper.Comment: 40 page
Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity
We show that the n-fold integrals of the magnetic susceptibility
of the Ising model, as well as various other n-fold integrals of the "Ising
class", or n-fold integrals from enumerative combinatorics, like lattice Green
functions, are actually diagonals of rational functions. As a consequence, the
power series expansions of these solutions of linear differential equations
"Derived From Geometry" are globally bounded, which means that, after just one
rescaling of the expansion variable, they can be cast into series expansions
with integer coefficients. Besides, in a more enumerative combinatorics
context, we show that generating functions whose coefficients are expressed in
terms of nested sums of products of binomial terms can also be shown to be
diagonals of rational functions. We give a large set of results illustrating
the fact that the unique analytical solution of Calabi-Yau ODEs, and more
generally of MUM ODEs, is, almost always, diagonal of rational functions. We
revisit Christol's conjecture that globally bounded series of G-operators are
necessarily diagonals of rational functions. We provide a large set of examples
of globally bounded series, or series with integer coefficients, associated
with modular forms, or Hadamard product of modular forms, or associated with
Calabi-Yau ODEs, underlying the concept of modularity. We finally address the
question of the relations between the notion of integrality (series with
integer coefficients, or, more generally, globally bounded series) and the
modularity (in particular integrality of the Taylor coefficients of mirror
map), introducing new representations of Yukawa couplings.Comment: 100 page
Ising n-fold integrals as diagonals of rational functions and integrality of series expansions
We show that the n-fold integrals of the magnetic susceptibility
of the Ising model, as well as various other n-fold integrals of the "Ising
class", or n-fold integrals from enumerative combinatorics, like lattice Green
functions, correspond to a distinguished class of function generalising
algebraic functions: they are actually diagonals of rational functions. As a
consequence, the power series expansions of the, analytic at x=0, solutions of
these linear differential equations "Derived From Geometry" are globally
bounded, which means that, after just one rescaling of the expansion variable,
they can be cast into series expansions with integer coefficients. We also give
several results showing that the unique analytical solution of Calabi-Yau ODEs,
and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal
weights, are always diagonal of rational functions. Besides, in a more
enumerative combinatorics context, generating functions whose coefficients are
expressed in terms of nested sums of products of binomial terms can also be
shown to be diagonals of rational functions. We finally address the question of
the relations between the notion of integrality (series with integer
coefficients, or, more generally, globally bounded series) and the modularity
of ODEs.Comment: This paper is the short version of the larger (100 pages) version,
available as arXiv:1211.6031 , where all the detailed proofs are given and
where a much larger set of examples is displaye
- …