13 research outputs found

    Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells

    Get PDF
    The zinc finger transcription factor, Bcl11b, is expressed in T cells and group 2 innate lymphoid cells (ILC2s) among hematopoietic cells. In early T-lineage cells, Bcl11b directly binds and represses the gene encoding the E protein antagonist, Id2, preventing pro-T cells from adopting innate-like fates. In contrast, ILC2s co-express both Bcl11b and Id2. To address this contradiction, we have directly compared Bcl11b action mechanisms in pro-T cells and ILC2s. We found that Bcl11b binding to regions across the genome shows distinct cell type–specific motif preferences. Bcl11b occupies functionally different sites in lineage-specific patterns and controls totally different sets of target genes in these cell types. In addition, Bcl11b bears cell type–specific post-translational modifications and organizes different cell type–specific protein complexes. However, both cell types use the same distal enhancer region to control timing of Bcl11b activation. Therefore, although pro-T cells and ILC2s both need Bcl11b for optimal development and function, Bcl11b works substantially differently in these two cell types

    Bcl11b and combinatorial resolution of cell fate in the T-cell gene regulatory network

    Get PDF
    T-cell development from hematopoietic progenitors depends on multiple transcription factors, mobilized and modulated by intrathymic Notch signaling. Key aspects of T-cell specification network architecture have been illuminated through recent reports defining roles of transcription factors PU.1, GATA-3, and E2A, their interactions with Notch signaling, and roles of Runx1, TCF-1, and Hes1, providing bases for a comprehensively updated model of the T-cell specification gene regulatory network presented herein. However, the role of lineage commitment factor Bcl11b has been unclear. We use self-organizing maps on 63 RNA-seq datasets from normal and perturbed T-cell development to identify functional targets of Bcl11b during commitment and relate them to other regulomes. We show that both activation and repression target genes can be bound by Bcl11b in vivo, and that Bcl11b effects overlap with E2A-dependent effects. The newly clarified role of Bcl11b distinguishes discrete components of commitment, resolving how innate lymphoid, myeloid, and dendritic, and B-cell fate alternatives are excluded by different mechanisms

    Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells

    Get PDF
    The zinc finger transcription factor, Bcl11b, is expressed in T cells and group 2 innate lymphoid cells (ILC2s) among hematopoietic cells. In early T-lineage cells, Bcl11b directly binds and represses the gene encoding the E protein antagonist, Id2, preventing pro-T cells from adopting innate-like fates. In contrast, ILC2s co-express both Bcl11b and Id2. To address this contradiction, we have directly compared Bcl11b action mechanisms in pro-T cells and ILC2s. We found that Bcl11b binding to regions across the genome shows distinct cell type–specific motif preferences. Bcl11b occupies functionally different sites in lineage-specific patterns and controls totally different sets of target genes in these cell types. In addition, Bcl11b bears cell type–specific post-translational modifications and organizes different cell type–specific protein complexes. However, both cell types use the same distal enhancer region to control timing of Bcl11b activation. Therefore, although pro-T cells and ILC2s both need Bcl11b for optimal development and function, Bcl11b works substantially differently in these two cell types

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    Get PDF
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials

    Relationship between the presence of left atrial thrombus in patients with mitral stenosis and platelet-to-lymphocyte ratio

    Get PDF
    Notch signaling is the dominant intercellular signaling input during the earliest stages of T cell development in the thymus. Although Notch1 is known to be indispensable, we show that it does not mediate all Notch signaling in precommitment stages: Notch2 initially works in parallel to promote early murine T cell development and antagonize other fates. Notch-regulated target genes before and after T lineage commitment change dynamically, and we show that this partially reflects shifts in genome-wide DNA binding by RBPJ, the transcription factor activated by complex formation with the Notch intracellular domain. Although Notch signaling and transcription factor PU.1 can activate some common targets in precommitment T progenitors, Notch signaling and PU.1 activity have functionally antagonistic effects on multiple targets, delineating separation of pro-T cells from alternative PU.1-dependent fates. These results define a distinct mechanism of Notch signal response that distinguishes the initial stages of murine T cell development

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    No full text
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4–CD8– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    No full text
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials
    corecore