24,811 research outputs found

    Systematic analysis of a spin-susceptibility representation of the pairing interaction in the 2D Hubbard model

    Full text link
    A dynamic cluster quantum Monte Carlo algorithm is used to study a spin susceptibility representation of the pairing interaction for the two-dimensional Hubbard model with an on-site Coulomb interaction equal to the bandwidth for various doping levels. We find that the pairing interaction is well approximated by {3/2}\Ub(T)^2\chi(K-K') with an effective temperature and doping dependent coupling \Ub(T) and the numerically calculated spin susceptibility χ(K−K′)\chi(K-K'). We show that at low temperatures, \Ub may be accurately determined from a corresponding spin susceptibility based calculation of the single-particle self-energy. We conclude that the strength of the d-wave pairing interaction, characterized by the mean-field transition temperature, can be determined from a knowledge of the dressed spin susceptibility and the nodal quasiparticle spectral weight. This has important implications with respect to the questions of whether spin fluctuations are responsible for pairing in the high-Tc_c cuprates.Comment: 5 pages, 5 figure

    Neutron scattering as a probe of the Fe-pnicitide superconducting gap

    Full text link
    Inelastic neutron scattering provides a probe for studying the spin and momentum structure of the superconducting gap. Here, using a two-orbital model for the Fe-pnicitide superconductors and an RPA-BCS approximation for the dynamic spin susceptibility, we explore the scattering response for various gaps that have been proposed.Comment: 5 pages, 4 figure

    Five-Loop Static Contribution to the Gravitational Interaction Potential of Two Point Masses

    Full text link
    We compute the static contribution to the gravitational interaction potential of two point masses in the velocity-independent five-loop (and 5th post-Newtonian) approximation to the harmonic coordinates effective action in a direct calculation. The computation is performed using effective field methods based on Feynman diagrams in momentum-space in d=3−2εd = 3 - 2\varepsilon space dimensions. We also reproduce the previous results including the 4th post-Newtonian order.Comment: 15 pages, 4 figure

    Evolution of the neutron resonances in AFe2Se2

    Full text link
    Recent experiments on the alkali-intercalated iron selenides have raised questions about the symmetry of the superconducting phase. Random phase approximation calculations of the leading pairing eigenstate for a tight- binding 5-orbital Hubbard-Hund model of AFe2Se2 find that a d-wave (B1g) state evolves into an extended s{\pm} (A1g) state as the system is hole-doped. However, over a range of doping these two states are nearly degenerate. Here, we calculate the imaginary part of the magnetic spin susceptibility \chi"(q,{\omega}) for these gaps and discuss how the evolution of neutron scattering resonances can distinguish between them
    • …
    corecore