1,792 research outputs found
A single-photon transistor using nano-scale surface plasmons
It is well known that light quanta (photons) can interact with each other in
nonlinear media, much like massive particles do, but in practice these
interactions are usually very weak. Here we describe a novel approach to
realize strong nonlinear interactions at the single-photon level. Our method
makes use of recently demonstrated efficient coupling between individual
optical emitters and tightly confined, propagating surface plasmon excitations
on conducting nanowires. We show that this system can act as a nonlinear
two-photon switch for incident photons propagating along the nanowire, which
can be coherently controlled using quantum optical techniques. As a novel
application, we discuss how the interaction can be tailored to create a
single-photon transistor, where the presence or absence of a single incident
photon in a ``gate'' field is sufficient to completely control the propagation
of subsequent ``signal'' photons.Comment: 20 pages, 4 figure
Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor
High-temperature (high-Tc) superconductivity in the copper oxides arises from
electron or hole doping of their antiferromagnetic (AF) insulating parent
compounds. The evolution of the AF phase with doping and its spatial
coexistence with superconductivity are governed by the nature of charge and
spin correlations and provide clues to the mechanism of high-Tc
superconductivity. Here we use a combined neutron scattering and scanning
tunneling spectroscopy (STS) to study the Tc evolution of electron-doped
superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing
process. We find that spin excitations detected by neutron scattering have two
distinct modes that evolve with Tc in a remarkably similar fashion to the
electron tunneling modes in STS. These results demonstrate that
antiferromagnetism and superconductivity compete locally and coexist spatially
on nanometer length scales, and the dominant electron-boson coupling at low
energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
Superdeformed rotational bands in Pu-240
The intermediate structure of the fission resonances has been observed in Pu-240. A resonance structure found around the excitation energy of 4.5 MeV was interpreted as a group of K-pi = 0(+) superdeformed rotational bands. The moments of inertia and level density distributions were also deduced for the individually observed band-heads
Chia-Yang Chen, clarinet
Max RegerKrzysztof PendereckiPaul PierneRoberto SierraGeorge Gershwi
Labyrinthine window rupture as a cause of acute sensorineural hearing loss
Labyrinthine window rupture (LWR) is one cause of acute sensorineural hearing loss and need for early exploration is clear for good improved hearing. Acute sensorineural hearing loss of 60Â dB or more treated from May 2006 to May 2010 were retrospectively analyzed. There were 21 ears of severe deafness, 18 ears of profound deafness, and 10 ears of total deafness. All patients were examined with temporal bone CT. Space-occupying lesions around the labyrinthine windows were suggestive images of LWR. Thirty-five ears were operated for LWR while 14 ears of SHL received conservative treatments. Fifty-seven percent of LWR improved 30Â dB or more after sealing of both labyrinthine windows. Of the 15 markedly recovered ears, 14 ears were operated within 2Â weeks from the onset. Of the five cured ears, four ears were operated within a week from the onset. As for the hearing prognosis of SHL, 88% of severe and profound deafness improved 30Â dB or more but total deafness did not improve more than 30Â dB. Exclusion of LWR from SHL and early surgical intervention in LWR will bring about good hearing prognosis to both LWR and SHL
Surface electrons at plasma walls
In this chapter we introduce a microscopic modelling of the surplus electrons
on the plasma wall which complements the classical description of the plasma
sheath. First we introduce a model for the electron surface layer to study the
quasistationary electron distribution and the potential at an unbiased plasma
wall. Then we calculate sticking coefficients and desorption times for electron
trapping in the image states. Finally we study how surplus electrons affect
light scattering and how charge signatures offer the possibility of a novel
charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological
Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse
Prediction of Thrombectomy Functional Outcomes using Multimodal Data
Recent randomised clinical trials have shown that patients with ischaemic
stroke {due to occlusion of a large intracranial blood vessel} benefit from
endovascular thrombectomy. However, predicting outcome of treatment in an
individual patient remains a challenge. We propose a novel deep learning
approach to directly exploit multimodal data (clinical metadata information,
imaging data, and imaging biomarkers extracted from images) to estimate the
success of endovascular treatment. We incorporate an attention mechanism in our
architecture to model global feature inter-dependencies, both channel-wise and
spatially. We perform comparative experiments using unimodal and multimodal
data, to predict functional outcome (modified Rankin Scale score, mRS) and
achieve 0.75 AUC for dichotomised mRS scores and 0.35 classification accuracy
for individual mRS scores.Comment: Accepted at Medical Image Understanding and Analysis (MIUA) 202
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Risk factors for bacterial catheter colonization in regional anaesthesia
BACKGROUND: Although several potential risk factors have been discussed, risk factors associated with bacterial colonization or even infection of catheters used for regional anaesthesia are not very well investigated. METHODS: In this prospective observational trial, 198 catheters at several anatomical sites where placed using a standardized technique. The site of insertion was then monitored daily for signs of infection (secretion at the insertion site, redness, swelling, or local pain). The catheters were removed when clinically indicated (no or moderate postoperative pain) or when signs of potential infection occurred. After sterile removal they were prospectively analyzed for colonization, defined as > 15 colony forming units. RESULTS: 33 (16.7%) of all catheters were colonized, and 18 (9.1%) of these with additional signs of local inflammation. Two of these patients required antibiotic treatment due to superficial infections. Stepwise logistic regression analysis was used to identify factors associated with catheter colonization. Out of 26 potential factors, three came out as statistically significant. Catheter placement in the groin (odds-ratio and 95%-confidence interval: 3.4; 1.5–7.8), and repeated changing of the catheter dressing (odds-ratio: 2.1; 1.4–3.3 per removal) increased the risk for colonization, whereas systemic antibiotics administered postoperatively decreased it (odds ratio: 0.41; 0.12–1.0). CONCLUSION: Colonization of peripheral and epidural nerve catheter can only in part be predicted at the time of catheter insertion since two out of three relevant variables that significantly influence the risk can only be recorded postoperatively. Catheter localisation in the groin, removal of the dressing and omission of postoperative antibiotics were associated with, but were not necessarily causal for bacterial colonization. These factors might help to identify patients who are at increased risk for catheter colonization
Recommended from our members
Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity
Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts
- …