2,572 research outputs found
An earley parsing algorithm for range concatenation grammars
We present a CYK and an Earley-style algorithm for parsing Range Concatenation Grammar (RCG), using the deductive parsing framework. The characteristic property of the Earley parser is that we use a technique of range boundary constraint propagation to compute the yields of non-terminals as late as possible. Experiments show that, compared to previous approaches, the constraint propagation helps to considerably decrease the number of items in the chart
XMG : eXtending MetaGrammars to MCTAG
In this paper, we introduce an extension of the XMG system (eXtensibleMeta-Grammar) in order to allow for the description of Multi-Component Tree Adjoining Grammars. In particular, we introduce the XMG formalism and its implementation, and show how the latter makes it possible to extend the system relatively easily to different target formalisms, thus opening the way towards multi-formalism.Dans cet article, nous présentons une extension du système XMG (eXtensible MetaGrammar) afin de permettre la description de grammaires darbres adjoints à composantes multiples. Nous présentons en particulier le formalisme XMG et son implantation et montrons comment celle-ci permet relativement aisément détendre le système à différents formalismes grammaticaux cibles, ouvrant ainsi la voie au multi-formalisme
59 Hartington Rd
University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/134001/1/LauraMaier_thesis.pd
TuLiPA : a syntax-semantics parsing environment for mildly context-sensitive formalisms
In this paper we present a parsing architecture that allows processing of different mildly context-sensitive formalisms, in particular Tree-Adjoining Grammar (TAG), Multi-Component Tree-Adjoining Grammar with Tree Tuples (TT-MCTAG) and simple Range Concatenation Grammar (RCG). Furthermore, for tree-based grammars, the parser computes not only syntactic analyses but also the corresponding semantic representations
Developing a TT-MCTAG for German with an RCG-based parser
Developing linguistic resources, in particular grammars, is known to be a complex task in itself, because of (amongst others) redundancy and consistency issues. Furthermore some languages can reveal themselves hard to describe because of specific characteristics, e.g. the free word order in German. In this context, we present (i) a framework allowing to describe tree-based grammars, and (ii) an actual fragment of a core multicomponent tree-adjoining grammar with tree tuples (TT-MCTAG) for German developed using this framework. This framework combines a metagrammar compiler and a parser based on range concatenation grammar (RCG) to respectively check the consistency and the correction of the grammar. The German grammar being developed within this framework already deals with a wide range of scrambling and extraction phenomena
Audit in Change: An Analysis of the EU Audit Reform on Statutory Audit for the Case of Germany
The purpose of this paper is to add knowledge to the understanding in which way the measures of the audit reform are in accordance with the EC’s intended objectives. This is examined for the case of Germany. The study further contributes to the program impact theory by applying this theory to a new research area
TuLiPA : towards a multi-formalism parsing environment for grammar engineering
In this paper, we present an open-source parsing environment (TĂĽbingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars (TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German
TuLiPA : towards a multi-formalism parsing environment for grammar engineering
In this paper, we present an open-source parsing environment (TĂĽbingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars (TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German
Un algorithme d'analyse de type earley pour grammaires à concaténation d'intervalles
Nous présentons ici différents algorithmes d’analyse pour grammaires à concaténation d’intervalles (Range Concatenation Grammar, RCG), dont un nouvel algorithme de type Earley, dans le paradigme de l’analyse déductive. Notre travail est motivé par l’intérêt porté récemment à ce type de grammaire, et comble un manque dans la littérature existante.We present several different parsing algorithms for Range Concatenation Grammar (RCG), inter alia an entirely novel Earley-style algorithm, using the deductive parsing framework. Our work is motivated by recent interest in range concatenation grammar in general and fills a gap in the existing literature
- …