2 research outputs found

    In vitro cell cytotoxicity profile and morphological response to polyoxometalate-stabilised gold nanoparticles

    Get PDF
    The size and redox properties of molecular polyoxometalates (POMs) make them extremely relevant for bioapplications: from disrupting tumour growth and enzyme inhibition, to DNA-intercalating agents and antimicrobial applications. Their unique ability to reversibly dominate and receive electrons, coupled with their high anionic charge, also makes them suitable for the preparation of zero-valent state metal nanoparticles (NPs) from molecular precursors. Polyoxometalate-stabilised nanoparticles (NPs@POM) are therefore an ideal delivery vehicle for bioactive POMs. Here we show how POM-stabilised gold NPs (AuNPs@POM) are massively internalised into Vero (kidney epithelial) and B16 (skin melanoma) cell lines with variable cytotoxic effects. Cell viability assays and quantification of cytoplasmic membrane composition revealed that the Vero cell line was unaltered by the internalisation of these hybrid particles; while their internalisation in B16 tumour cells produced mild cytotoxic effects and an antiproliferative cell cycle arrest in the G0/G1 and G2/M phases. The observed perturbation of the tumour cell line combined with the high degree of internalisation means that these (or similar) NPs@POM could serve as candidates for a range of bioapplications in diagnostics or therapy

    On the formation of gold nanoparticles from [AuIIICl4]- and a non-classical reduced polyoxomolybdate as an electron source: A quantum mechanical modelling and experimental study

    Get PDF
    Polyoxometalate (POM)-mediated reduction and nucleation mechanisms in nanoparticle (NP) syntheses are still largely unknown. We carried out comprehensive theoretical analysis using density functional theory (DFT) to gain insight into the molecular and electronic changes that occur during the reduction of HAuIIICl4 with the Kabanos-type polyoxomolybdate, Na{(MoV2O4)3(µ2-O)3(µ2-SO3)3(µ6-SO3)}2]15-. In the system presented herein the electrons are supplied by the POM, making the computational thermodynamic analysis more feasible. Our results reveal that this particular POM is a multi-electron source and the proton-coupled electron transfer (PCET) greatly promotes the reduction process. Based on the energy and molecular orbital studies of the intermediate species the reduction of AuIII to AuI is shown to be thermodynamically favourable, and a low HOMO-LUMO gap of the POM-Au superstructure is advantageous for electron transfer. By modelling the reduction of three couples of AuIII ¿ AuI by the same POM unit, it is proposed that the reduced polyoxomolybdate is finally fully oxidised. The subjacent idea of using the Kabanos POM was confirmed by comprehensive experimental characterisation of POM-stabilised gold nanoparticles (AuNPs@POM). Present theoretical analysis suggests that protons have a significant influence on the final AuI to Au0 reduction step that ultimately leads to colloidal AuNPs@POM
    corecore