85 research outputs found

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    Metallo-dielectric diamond and zinc-blende photonic crystals

    Full text link
    It is shown that small inclusions of a low absorbing metal can have a dramatic effect on the photonic band structure. In the case of diamond and zinc-blende photonic crystals, several complete photonic band gaps (CPBG's) can open in the spectrum, between the 2nd-3rd, 5th-6th, and 8th-9th bands. Unlike in the purely dielectric case, in the presence of small inclusions of a low absorbing metal the largest CPBG for a moderate dielectric constant (epsilon<=10) turns out to be the 2nd-3rd CPBG. The 2nd-3rd CPBG is the most important CPBG, because it is the most stable against disorder. For a diamond and zinc-blende structure of nonoverlapping dielectric and metallo-dielectric spheres, a CPBG begins to decrease with an increasing dielectric contrast roughly at the point where another CPBG starts to open--a kind of gap competition. A CPBG can even shrink to zero when the dielectric contrast increases further. Metal inclusions have the biggest effect for the dielectric constant 2<=epsilon<=12, which is a typical dielectric constant at near infrared and in the visible for many materials, including semiconductors and polymers. It is shown that one can create a sizeable and robust 2nd-3rd CPBG at near infrared and visible wavelengths even for a photonic crystal which is composed of more than 97% low refractive index materials (n<=1.45, i.e., that of silica glass or a polymer). These findings open the door for any semiconductor and polymer material to be used as genuine building blocks for the creation of photonic crystals with a CPBG and significantly increase the possibilities for experimentalists to realize a sizeable and robust CPBG in the near infrared and in the visible. One possibility is a construction method using optical tweezers, which is analyzed here.Comment: 25 pp, 23 figs, RevTex, to appear in Phys Rev B. For more information look at http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm

    To Fear is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls

    Get PDF
    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr
    • 

    corecore