5 research outputs found

    Relationships between nutrients and sucrose concentrations in sugarcane juice and use of juice analysis for nutrient diagnosis in Japan

    No full text
    Sugarcane is an important economic crop in southwest Japan, but its production is decreasing. To increase sugar production, both sugarcane yield and quality should be improved. Fertilizer management is one of the factors that influence sugarcane quality. We accordingly focused on nutrients present in sugarcane juice and attempted to identify the key factors affecting sugarcane quality. We collected sugarcane samples from 2013 to 2015 from all of the sugar mills in Japan and examined the relationships between juice nutrients and sucrose concentration. Juice analysis over 3 year showed that potassium (K+) and chloride (Cl−) were the most abundant cation and anion in the juice and that both negatively correlated with the sucrose concentration. K+ and Cl− concentrations significantly varied depending on production areas and those with higher K+ and Cl− concentrations had a low sucrose concentration. This finding suggests that sugarcane in those areas may have been supplied with these two ions in excess. Electrical conductivity (EC) in the juice always positively correlated with K+ and Cl− concentrations. EC may thus be a reliable indicator of K+ and Cl− concentrations and could be used for nutrient diagnosis because of its ease of measurement. For improving sugarcane quality, we recommend that potassium chloride, which supplies both K+ and Cl− and is a commonly used potassium fertilizer for sugarcane production in Japan, should be used in lower quantities in a year following one in which the EC of sugarcane juice at harvest is found to be high

    Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels

    No full text
    Drought stress which often occurs during early growth stage is one constraint in sugarcane production. In this study, the response of sugarcane to drought and nitrogen application for physiological and agronomical characteristics was investigated. Two water regimes (well-watered and drought stress from 60 to 120 day after transplanting) and four nitrogen levels (0, 4.4, 8.8 and 13.2 g pot−1 equivalent to 0, 90, 180 and 270 kg ha−1, respectively) were assigned in a Split-plot design with three replications. The results showed that photosynthetic responses to light intensity and intercellular CO2 concentrations of sugarcane were different between fertilized and non-fertilized treatments. Photosynthetic rates of 180 and 270 N treatments, normally, were significantly higher than that of 90 N, but not significant at drought conditions. Photosynthetic rates of 0 N treatment were the lowest under both conditions. Higher nitrogen application supported higher photosynthetic rate, stomatal conductance, and chlorophyll content because of higher nitrogen concentration accumulated into the leaf. Drought significantly reduced the potential photosynthetic rate, stomatal conductance, SPAD, leaf area, and biomass production. Higher nitrogen applications with larger root system could support higher photosynthetic activities to accumulate more dry mass. Strong positive coefficient between photosynthetic and biomass nitrogen use efficiency and drought tolerance index may suggest that higher nitrogen use efficiency could help plants have higher ability to tolerate drought stress

    Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane

    No full text
    Global climate change will result in extreme environments, such as droughts and floods. We investigated the individual and combined effects of droughts and floods of varying duration on sugarcane (Saccharum spp.) growth using a pot experiment under glasshouse conditions with the following six treatments: drought for 15 d, prolonged drought for 30 d, flood for 15 d, prolonged flood for 30 d, short flood followed by prolonged drought, and prolonged flood followed by prolonged drought. Plants that were subjected to drought conditions, including drought after a flood, had reduced CO2 assimilation (through stomatal closure) and leaf areas, whereas flood conditions showed no effect. During flooding, some roots died, and adventitious roots with well-developed aerenchyma appeared from the submerged nodes. At the time of harvest, there were no significant differences in stem fresh weight, sucrose content, or sugar yield between the treatments. However, ion content analysis revealed that flood conditions caused an accumulation of sodium in the bottom of stems and adventitious roots. Therefore, under flood conditions, plants may develop adventitious roots, which may offset the negative effects of root death, helping them to maintain their growth and yield
    corecore