4 research outputs found

    The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice

    Get PDF
    Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice

    The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice

    Get PDF
    Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice

    Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes

    Get PDF
    The natural compound, curcumin (CUR), possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT) inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy.Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure–activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy
    corecore