3,745 research outputs found
Recommended from our members
Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF.
The effect of cyclic mechanical strain on growth of neonatal rat vascular smooth muscle (VSM) cells were examined. Cells were grown on silicone elastomer plates subjected to cyclic strain (60 cycle/min) by application of a vacuum under the plates. A 48 h exposure to mechanical strain increased the basal rate of thymidine incorporation by threefold and increased cell number by 40% compared with cells grown on stationary rubber plates. Strain also increased the rate of thymidine incorporation in response to alpha-thrombin (from 15- to 33-fold), but not to PDGF. As determined by thymidine autoradiography, strain alone induced a fourfold increase in labeled nuclei at the periphery of dishes, where strain is maximal, and a 2-3-fold increase at the center of dishes. Strain appeared to induce the production of an autocrine growth factor(s), since conditioned medium from cells subjected to strain induced a fourfold increase in DNA synthesis in control cells. Western blots of medium conditioned on the cells subjected to strain indicate that the cells secrete both AA and BB forms of PDGF in response to strain. Northern blots of total cell RNA from cells exposed to strain for 24 h show increased steady-state level of mRNA for PDGF-A. Lastly, polyclonal antibodies to the AA form of PDGF reduced by 75% the mitogenic effect of strain and polyclonal antibodies to AB-PDGF reduced mitogenicity by 50%. Antibodies to bFGF did not significantly reduce the strain-induced thymidine incorporation. Thus, the mechanism of strain-induced growth appears to involve the intermediary action of secreted PDGF
Probing the Mechanisms of Fibril Formation Using Lattice Models
Using exhaustive Monte Carlo simulations we study the kinetics and mechanism
of fibril formation using lattice models as a function of temperature and the
number of chains. While these models are, at best, caricatures of peptides, we
show that a number of generic features thought to govern fibril assembly are
present in the toy model. The monomer, which contains eight beads made from
three letters (hydrophobic, polar, and charged), adopts a compact conformation
in the native state. The kinetics of fibril assembly occurs in three distinct
stages. In each stage there is a cascade of events that transforms the monomers
and oligomers to ordered structures. In the first "burst" stage highly mobile
oligomers of varying sizes form. The conversion to the aggregation-prone
conformation occurs within the oligomers during the second stage. As time
progresses, a dominant cluster emerges that contains a majority of the chains.
In the final stage, the aggregation-prone conformation particles serve as a
template onto which smaller oligomers or monomers can dock and undergo
conversion to fibril structures. The overall time for growth in the latter
stages is well described by the Lifshitz-Slyazov growth kinetics for
crystallization from super-saturated solutions.Comment: 27 pages, 6 figure
Disorder-induced microscopic magnetic memory
Using coherent x-ray speckle metrology, we have measured the influence of
disorder on major loop return point memory (RPM) and complementary point memory
(CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the
low disorder limit, the domain structures show no memory with field cycling--no
RPM and no CPM. With increasing disorder, we observe the onset and the
saturation of both the RPM and the CPM. These results provide the first direct
ensemble-sensitive experimental study of the effects of varying disorder on
microscopic magnetic memory and are compared against the predictions of
existing theories.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letters in Nov. 200
Microwave-assisted automated glycan assembly
Automated synthesis of DNA, RNA, and peptides provides quickly and reliably important tools for biomedical research. Automated glycan assembly (AGA) is significantly more challenging as highly branched carbohydrates require strict regio- and stereocontrol during synthesis. A new AGA synthesizer enables rapid temperature adjustment from -40 °C to +100 °C to control glycosylations at low temperature and accelerates capping, protecting group removal, and glycan modifications by using elevated temperatures. Thereby, the temporary protecting group portfolio is extended from two to four orthogonal groups that give rise to oligosaccharides with up to four branches. In addition, sulfated glycans and unprotected glycans can be prepared. The new design reduces the typical coupling cycles from 100 min to 60 min while expanding the range of accessible glycans. The instrument drastically shorten and generalizes the synthesis of carbohydrates for use in biomedical and material science
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Recommended from our members
"The dearest of our possessions": applying Floridi's information privacy concept in models of information behavior and information literacy
This conceptual paper argues for the value of an approach to privacy in the digital information environment informed by Luciano Floridi's philosophy of information and information ethics. This approach involves achieving informational privacy, through the features of anonymity and obscurity, through an optimal balance of ontological frictions. This approach may be used to modify models for information behavior and for information literacy, giving them a fuller and more effective coverage of privacy issues in the infosphere. For information behavior, the Information Seeking and Communication Model, and the Information Grounds conception, are most appropriate for this purpose. For information literacy, the metaliteracy model, using a modification a privacy literacy framework, is most suitable
Finite size effects on thermal denaturation of globular proteins
Finite size effects on the cooperative thermal denaturation of proteins are
considered. A dimensionless measure of cooperativity, Omega, scales as N^zeta,
where N is the number of amino acids. Surprisingly, we find that zeta is
universal with zeta = 1 + gamma, where the exponent gamma characterizes the
divergence of the susceptibility for a self-avoiding walk. Our lattice model
simulations and experimental data are consistent with the theory. Our finding
rationalizes the marginal stability of proteins and substantiates the earlier
predictions that the efficient folding of two-state proteins requires the
folding transition temperature to be close to the collapse temperature.Comment: 3 figures. Physical Review Letters (in press
VaporSPOT : parallel synthesis of oligosaccharides on membranes
Automated chemical synthesis has revolutionized synthetic access to biopolymers in terms of simplicity and speed. While automated oligosaccharide synthesis has become faster and more versatile, the parallel synthesis of oligosaccharides is not yet possible. Here, a chemical vapor glycosylation strategy (VaporSPOT) is described that enables the simultaneous synthesis of oligosaccharides on a cellulose membrane solid support. Different linkers allow for flexible and straightforward cleavage, purification, and characterization of the target oligosaccharides. This method is the basis for the development of parallel automated glycan synthesis platforms
Scaling of folding properties in simple models of proteins
Scaling of folding properties of proteins is studied in a toy system -- the
lattice Go model with various two- and three- dimensional geometries of the
maximally compact native states. Characteristic folding times grow as power
laws with the system size. The corresponding exponents are not universal.
Scaling of the thermodynamic stability also indicates size-related
deterioration of the folding properties.Comment: REVTeX, 4 pages, 4 EPS figures, PRL (in press
- …