3 research outputs found

    Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke

    Get PDF
    Oxidative stress is the common underlying mechanism of damage in ischemic stroke. Therefore, we aimed to evaluate the possible protective effects of polyhydroxylated fullerene derivatives on brain infarction and oxidative/nitrosative stress in a rat model of ischemic stroke. The experiment was performed by four groups of rats (each; n=12); Sham, Control ischemia, and ischemic treatment groups (Pretreatment and Posttreatment). Brain ischemia was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24 hours reperfusion. Rats received fullerene nanoparticles at dose of 1 mg/kg 30 min before MCAO and immediately after beginning of reperfusion. Infarct volume, contents of malondialdehyde (MDA), glutathione (GSH) and nitrate as well as superoxide dismutase (SOD) activity were assessed 24 hours after termination of MCAO. Brain infarct volume was 310 ± 21 mm3 in control group. Administration of fullerene nanoparticles before and after MCAO significantly decreased the infarct volume by 53 % (145 ± 45 mm3) and 81 % (59 ± 13 mm3), respectively. Ischemia also enhanced MDA and nitrate contents of ischemic hemispheres by 45 % and 25 % , respectively. Fullerene nanoparticles considerably reduced the MDA and nitrate contents of ischemic hemispheres before MCAO by 58 % and 17 % , respectively, and after MCAO by 38 % and 21 % , respectively. Induction of MCAO significantly decreased GSH content (19 % ) and SOD activity (52 % ) of ischemic hemispheres, whereas fullerene nanoparticles increased the GSH content and SOD activity of ischemic hemispheres by 19 % and 52 % before MCAO, respectively, and 21 % and 55 % after MCAO, respectively. Our findings indicate that fullerene nanoparticles, as a potent scavenger of free radicals, protect the brain cells against ischemia/reperfusion injury and inhibit brain oxidative/nitrosative damage

    Evaluation of the neuroprotective and antioxidant effects of Dorema aucheri extract on cerebral ischaemia-reperfusion injury in rats

    No full text
    Context: The hydroalcoholic extract of Dorema aucheri Bilhar (Umbelliferae) (DA) leaves, a medicinal plant, has powerful antioxidant properties. Objective: This study evaluates the neuroprotective effects of pre-treatment with DA leaves extract against cerebral ischaemia-induced brain injury through alteration of the antioxidant capacity. Materials and methods: The study was conducted in three groups of Wistar rats (N = 47) as follows; sham, control ischaemic and pre-treated ischaemic groups. Rats were administered a fresh hydroalcoholic extract of DA leaves at a dosage of 200 mg/kg/day for 14 days. Then, the middle cerebral artery (MCA) of the right hemisphere was occluded for 90 min to achieve cerebral ischaemia. After 24 h reperfusion, cerebral infarction and superoxide dismutase (SOD) and catalase activities, as well as malondialdehyde (MDA), glutathione, and NOx contents were determined in the right hemispheres. Results: Occlusion of the right MCA caused noticeable cerebral infarction (298 ± 21 mm3) in control ischaemic group, but pre-treatment with DA extract considerably attenuated it (92 ± 14 mm3) in the pre-treated ischaemic group. DA extract significantly decreased the levels of MDA by 28% and NOx by 11% in pre-treated ischaemic group compared to the control ischaemic group. DA extract also enhanced glutathione content by 7%, SOD activity by 16% and catalase activity by 46% in pre-treated ischaemic rats compared to control ischaemic rats. Discussion and conclusions: DA is able to improve the antioxidant capacity and injuries of ischaemic brain. It is proposed as a neuroprotectant following cerebral ischaemia to decrease the injuries of ischaemic stroke
    corecore