1,042 research outputs found
Cotunneling Transport and Quantum Phase Transitions in Coupled Josephson-Junction Chains with Charge Frustration
We investigate the quantum phase transitions in two capacitively coupled
chains of ultra-small Josephson-junctions, with emphasis on the external charge
effects. The particle-hole symmetry of the system is broken by the gate voltage
applied to each superconducting island, and the resulting induced charge
introduces frustration to the system. Near the maximal-frustration line, where
the system is transformed into a spin-1/2 Heisenberg antiferromagnetic chain,
cotunneling of the particles along the two chains is shown to play a major role
in the transport and to drive a quantum phase transition out of the
charge-density wave insulator, as the Josephson-coupling energy is increased.
We also argue briefly that slightly off the symmetry line, the universality
class of the transition remains the same as that right on the line, still being
driven by the particle-hole pairs.Comment: Final version accepted to Phys. Rev. Lett. (Longer version is
available from http://ctp.snu.ac.kr/~choims/
First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions
We report the first measurement of monoenergetic muon neutrino charged
current interactions. MiniBooNE has isolated 236 MeV muon neutrino events
originating from charged kaon decay at rest ()
at the NuMI beamline absorber. These signal -carbon events are
distinguished from primarily pion decay in flight and
backgrounds produced at the target station and decay pipe
using their arrival time and reconstructed muon energy. The significance of the
signal observation is at the 3.9 level. The muon kinetic energy,
neutrino-nucleus energy transfer (), and total cross
section for these events is extracted. This result is the first known-energy,
weak-interaction-only probe of the nucleus to yield a measurement of
using neutrinos, a quantity thus far only accessible through electron
scattering.Comment: 6 pages, 4 figure
Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector
Two independent methods are employed to measure the neutrino flux of the
anti-neutrino-mode beam observed by the MiniBooNE detector. The first method
compares data to simulated event rates in a high purity \numu induced
charged-current single \pip (CC1\pip) sample while the second exploits the
difference between the angular distributions of muons created in \numu and
\numub charged-current quasi-elastic (CCQE) interactions. The results from
both analyses indicate the prediction of the neutrino flux component of the
pre-dominately anti-neutrino beam is over-estimated - the CC1\pip analysis
indicates the predicted \numu flux should be scaled by , while
the CCQE angular fit yields . The energy spectrum of the flux
prediction is checked by repeating the analyses in bins of reconstructed
neutrino energy, and the results show that the spectral shape is well modeled.
These analyses are a demonstration of techniques for measuring the neutrino
contamination of anti-neutrino beams observed by future non-magnetized
detectors.Comment: 15 pages, 7 figures, published in Physical Review D, latest version
reflects changes from referee comment
A Search for Electron Antineutrino Appearance at the 1 Scale
The MiniBooNE Collaboration reports initial results from a search for
oscillations. A signal-blind analysis was
performed using a data sample corresponding to protons on
target. The data are consistent with background prediction across the full
range of neutrino energy reconstructed assuming quasielastic scattering, MeV: 144 electron-like events have been observed in this
energy range, compared to an expectation of events. No
significant excess of events has been observed, both at low energy, 200-475
MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect
to antineutrino oscillations suggested by data from the Liquid Scintillator
Neutrino Detector at Los Alamos National Laboratory.Comment: 5 pages, 3 figures, 2 table
Measurement of the \nu_\mu charged current \pi^+ to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam
Using high statistics samples of charged current interactions,
MiniBooNE reports a measurement of the single charged pion production to
quasi-elastic cross section ratio on mineral oil (CH), both with and
without corrections for hadron re-interactions in the target nucleus. The
result is provided as a function of neutrino energy in the range 0.4 GeV 2.4 GeV with 11% precision in the region of highest statistics. The
results are consistent with previous measurements and the prediction from
historical neutrino calculations.Comment: 4 pages, 2 figure
Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon
The observation of neutrino oscillations is clear evidence for physics beyond
the standard model. To make precise measurements of this phenomenon, neutrino
oscillation experiments, including MiniBooNE, require an accurate description
of neutrino charged current quasi-elastic (CCQE) cross sections to predict
signal samples. Using a high-statistics sample of muon neutrino CCQE events,
MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments,
accurately characterizes the CCQE events observed in a carbon-based detector.
The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20
GeV, that describes the four-momentum dependence of the axial-vector form
factor of the nucleon; and a Pauli-suppression parameter, kappa =
1.019+/-0.011. Such a modified Fermi gas model may also be used by future
accelerator-based experiments measuring neutrino oscillations on nuclear
targets.Comment: 5 pages, 3 figure
Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam
The SciBooNE Collaboration reports a measurement of inclusive charged current
interactions of muon neutrinos on carbon with an average energy of 0.8 GeV
using the Fermilab Booster Neutrino Beam. We compare our measurement with two
neutrino interaction simulations: NEUT and NUANCE. The charged current
interaction rates (product of flux and cross section) are extracted by fitting
the muon kinematics, with a precision of 6-15% for the energy dependent and 3%
for the energy integrated analyses. We also extract CC inclusive interaction
cross sections from the observed rates, with a precision of 10-30% for the
energy dependent and 8% for the energy integrated analyses. This is the first
measurement of the CC inclusive cross section on carbon around 1 GeV. These
results can be used to convert previous SciBooNE cross section ratio
measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to
match the accepted versio
- …