9 research outputs found

    Classification of Biomedical Data with Class Imbalance

    Get PDF
    13301甲第5407号博士(学術)金沢大学博士論文本文Ful

    Classification of Imbalanced Data Represented as Binary Features

    Get PDF
    Typically, classification is conducted on a dataset that consists of numerical features and target classes. For instance, a grayscale image, which is usually represented as a matrix of integers varying from 0 to 255, enables one to apply various classification algorithms to image classification tasks. However, datasets represented as binary features cannot use many standard machine learning algorithms optimally, yet their amount is not negligible. On the other hand, oversampling algorithms such as synthetic minority oversampling technique (SMOTE) and its variants are often used if the dataset for classification is imbalanced. However, since SMOTE and its variants synthesize new minority samples based on the original samples, the diversity of the samples synthesized from binary features is highly limited due to the poor representation of original features. To solve this problem, a preprocessing approach is studied. By converting binary features into numerical ones using feature extraction methods, succeeding oversampling methods can fully display their potential in improving the classifiers’ performances. Through comprehensive experiments using benchmark datasets and real medical datasets, it was observed that a converted dataset consisting of numerical features is better for oversampling methods (maximum improvements of accuracy and F1-score were 35.11% and 42.17%, respectively). In addition, it is confirmed that feature extraction and oversampling synergistically contribute to the improvement of classification performance

    SK Tugas Mengajar dan Rekap Presensi

    Get PDF
    SK Tugas Mengajar dan Rekap Presensi Kuliah P.Mat dan MPMat UA

    Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals

    No full text
    Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification
    corecore