2 research outputs found
Effect of Particle Size Distribution and Packing Characteristics on Railroad Ballast Shear Strength: A Numerical Study Using the Discrete Element Method
Railroad infrastructure plays a significant role in sustaining the economy of a country, and facilitates fast, safe and reliable transportation of passengers as well as commodities. Significant capital investments are required for the construction and maintenance of a railroad network that is structurally and functionally adequate. The ballast layer is one of the main structural components of a conventional rail track system, and comprises coarse-grained unbound particles, often as large as in size. The ballast as a load-bearing layer resists train-induced stresses through particle-particle interaction. Accordingly, particle-size distribution and packing characteristics are important factors that govern the mechanical behavior of the ballast layer under loading. A well-performing ballast layer should ideally possess optimum drainage characteristics to ensure rapid removal of surface water and adequate shear strength to restrain the track against excessive movement under loading. In-depth understanding of different factors affecting ballast behavior can help reduce recurrent costs associated with ballast maintenance.
Conducting common shear strength tests on coarse-grained geomaterials such as railroad ballast, and performing parametric studies to quantify the effects of different material, specimen, and test parameters on shear strength properties is often not feasible in standard geotechnical engineering laboratories due to the significantly large specimen and test setup requirements. In such situations, the Discrete Element Method (DEM) that facilitates micromechanical analysis of particulate matter becomes a logical alternative. The primary objective of this research effort is to study the effects of particle-size distribution and packing characteristics on the shear strength behavior of railroad ballast. This was accomplished by simulating commonly used laboratory shear strength tests such as Direct Shear Test and Triaxial Monotonic Shear Strength Test using DEM. A commercially available three-dimensional DEM package (Particle Flow Code - PFC3DĀ®) was used for this purpose. Published laboratory-test data were used to calibrate the numerical model. A series of parametric analyses were subsequently carried out to quantify the individual effects of different variables being studied on ballast shear strength behavior. In an effort to increase ballast shear strength through better packing within the granular matrix, a new gradation parameter, termed as the āCoarse-to-Fine (C/F) Ratioā was proposed. Changing the ācoarseā and āfineā fractions within a particular gradation specification, the resulting effect on ballast shear strength was studied. In addition to studying the particle-to-particle interaction within the ballast matrix, this study also focused on studying the phenomenon of geogrid-ballast interaction under different packing conditions. A recently developed parameter known as the āGeogrid Gain Factorā was used to quantify the benefits of geogrid reinforcement of ballast. The ultimate objective was to further the understanding of ballast behavior under loading, which will ultimately lead to the design and construction of better-performing railroad tracks
Effect of Particle Size and Shape Characteristics on Ballast Shear Strength: A Numerical Study Using the Direct Shear Test
The ballast layer serves as a major structural component in typical ballasted railroad track systems. When subjected to an external load, ballast particles present a complex mechanical response which is strongly dependent on particle to particle interactions within this discrete medium. One common test used to study the shear strength characteristics of railroad ballast is the Direct Shear Test (DST). However, it is often not feasible in standard geotechnical engineering laboratories to conduct direct shear tests on ballast particles due to significantly large specimen and test setup requirements. Even for the limited number of laboratories equipped to accommodate the testing of such large specimens, conducting repeated tests for parametric analysis of different test and specimen parameters on shear strength properties is often not feasible. Numerical modeling efforts are therefore commonly used for such parametric analyses. An ongoing research study at Boise State University is using the Discrete Element Method (DEM) to evaluate the effects of varying particle size and shape characteristics (i.e., flakiness, elongation, roundness, angularity) on direct shear strength behavior of railroad ballast. A commercially available three-dimensional DEM package (PFC3DĀ®) is being used for this purpose. In numerical modeling, railroad ballasts can be simulated using spheres (simple approach) and non-breakable clumps (complex approach). This paper utilizes both approaches to compare the ballast stress-strain response as obtained from DST. Laboratory test results available in published literature are being used to calibrate the developed numerical models. This paper presents findings from this numerical modeling effort, and draws inferences concerning the implications of these findings on the design and construction of railroad ballast layers