21 research outputs found

    Dual-Energy CT Material Decomposition:The Value in the Detection of Lymph Node Metastasis from Breast Cancer

    Get PDF
    Purpose: To evaluate the diagnostic performance of a dual-energy computed tomography (DECT)-based material decomposition algorithm for iodine quantification and fat fraction analysis to detect lymph node metastases in breast cancer patients. Materials and Methods: 30 female patients (mean age, 63.12 ± 14.2 years) diagnosed with breast cancer who underwent pre-operative chest DECT were included. To establish a reference standard, the study correlated histologic repots after lymphadenectomy or confirming metastasis in previous/follow-up examinations. Iodine concentration and fat fraction were determined through region-of-interest measurements on venous DECT iodine maps. Receiver operating characteristic curve analysis was conducted to identify the optimal threshold for differentiating between metastatic and non-metastatic lymph nodes. Results: A total of 168 lymph nodes were evaluated, divided into axillary (metastatic: 46, normal: 101) and intramammary (metastatic: 10, normal: 11). DECT-based fat fraction values exhibited significant differences between metastatic (9.56 ± 6.20%) and non-metastatic lymph nodes (41.52 ± 19.97%) (p &lt; 0.0001). Absolute iodine concentrations showed no significant differences (2.25 ± 0.97 mg/mL vs. 2.08 ± 0.97 mg/mL) (p = 0.7999). The optimal fat fraction threshold for diagnosing metastatic lymph nodes was determined to be 17.75%, offering a sensitivity of 98% and a specificity of 94%. Conclusions: DECT fat fraction analysis emerges as a promising method for identifying metastatic lymph nodes, overcoming the morpho-volumetric limitations of conventional CT regarding lymph node assessment. This innovative approach holds potential for improving pre-operative lymph node evaluation in breast cancer patients, offering enhanced diagnostic accuracy.</p

    Dual-Energy CT Material Decomposition:The Value in the Detection of Lymph Node Metastasis from Breast Cancer

    Get PDF
    Purpose: To evaluate the diagnostic performance of a dual-energy computed tomography (DECT)-based material decomposition algorithm for iodine quantification and fat fraction analysis to detect lymph node metastases in breast cancer patients. Materials and Methods: 30 female patients (mean age, 63.12 ± 14.2 years) diagnosed with breast cancer who underwent pre-operative chest DECT were included. To establish a reference standard, the study correlated histologic repots after lymphadenectomy or confirming metastasis in previous/follow-up examinations. Iodine concentration and fat fraction were determined through region-of-interest measurements on venous DECT iodine maps. Receiver operating characteristic curve analysis was conducted to identify the optimal threshold for differentiating between metastatic and non-metastatic lymph nodes. Results: A total of 168 lymph nodes were evaluated, divided into axillary (metastatic: 46, normal: 101) and intramammary (metastatic: 10, normal: 11). DECT-based fat fraction values exhibited significant differences between metastatic (9.56 ± 6.20%) and non-metastatic lymph nodes (41.52 ± 19.97%) (p &lt; 0.0001). Absolute iodine concentrations showed no significant differences (2.25 ± 0.97 mg/mL vs. 2.08 ± 0.97 mg/mL) (p = 0.7999). The optimal fat fraction threshold for diagnosing metastatic lymph nodes was determined to be 17.75%, offering a sensitivity of 98% and a specificity of 94%. Conclusions: DECT fat fraction analysis emerges as a promising method for identifying metastatic lymph nodes, overcoming the morpho-volumetric limitations of conventional CT regarding lymph node assessment. This innovative approach holds potential for improving pre-operative lymph node evaluation in breast cancer patients, offering enhanced diagnostic accuracy.</p

    Correlation of mean apparent diffusion coefficient (ADC) and maximal standard uptake value (SUVmax) evaluated by diffusion-weighted MRI and 18F-FDG-PET/CT in children with Hodgkin lymphoma: a feasibility study

    No full text
    The objective was to analyse if magnetic resonance imaging (MRI) can act as a non-radiation exposure surrogate for (18)F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in children with histologically confirmed Hodgkin lymphoma (HL) before treatment. This was done by analysing a potential correlation between apparent diffusion coefficient (ADC) in MRI and the maximum standardized uptake value (SUVmax) in FDG-PET/CT

    Value of Dual-Energy CT Perfusion Analysis in Patients with Acute Pancreatitis: Correlation and Discriminative Diagnostic Accuracy with Varying Disease Severity

    Get PDF
    Background: This study investigates the correlation and discriminative diagnostic accuracy of dual-energy CT (DECT)-derived imaging biomarkers in patients with acute pancreatitis of varying severity. Methods: In this retrospective study, we included 51 patients with acute pancreatitis who had undergone portal-venous phase DECT of the abdomen. Three blinded readers independently performed region-of-interest measurements on DECT images in the inflammatory pancreatic parenchyma. The correlation between modified CT severity index (CTSI) and quantitative imaging parameters was investigated using Pearson correlation coefficient. We performed receiver operator curve (ROC) analysis to assess diagnostic accuracy of the quantitative image parameters for the differentiation between mild/moderate versus severe acute pancreatitis. The optimal discriminative cut-off value to diagnose severe acute pancreatitis was determined using the Youden index. Results: Moderate correlations were found between CTSI scores and iodine density (Pearson’s correlation coefficient r = −0.65; p < 0.001), as well as attenuation (r = −0.55; p < 0.001) and normalized iodine uptake (r = −0.50; p < 0.001). ROC curve analysis revealed highest ability to differentiate mild/moderate from severe acute pancreatitis for iodine density (AUC = 0.86, 95% confidence interval 0.75 to 0.97). An optimal iodine density threshold of ≤1.63 mg/mL was found to indicate severe acute pancreatitis with a sensitivity of 81.3% and specificity of 77.1%. Conclusion: DECT-derived iodine density correlates with acute pancreatitis severity and may facilitate prediction of severe acute pancreatitis

    Differences in mastoid and middle-ear cavity opacification in CT between intensive care patients and patients with acute mastoiditis requiring surgical treatment

    No full text
    Purpose: To stratify differences in visual semantic and quantitative imaging features in intensive care patients with nonspecific mastoid effusions versus patients with acute mastoiditis (AM) requiring surgical treatment. Methods: We included 48 patients (male, 28; female, 20; mean age, 59.5 ± 18.1 years) with mastoid opacification (AM, n = 24; control, n = 24) who underwent clinically indicated cerebral CT between 12/2007 and 07/2018 in this retrospective study. Semantic features described the extend and asymmetry of mastoid and middle-ear cavity opacification and complications like erosive changes. Minimum, maximum and mean Hounsfield unit (HU) values were obtained as quantitative features. We analyzed the features employing univariate testing. Results: Compared to intensive care patients, AM patients revealed asymmetric mastoid or middle-ear cavity opacification (likelihood-ratio (LR) < 0.001). Applying a dedicated threshold of the extent of opacification, AM patients reached significance levels of LR = 0.042 and 0.002 for mastoid and middle-ear cavity opacification. AM cases showed higher maximum and mean HU values (p = 0.009, p = 0.024). Conclusions: We revealed that the extent and asymmetry of mastoid and middle-ear cavity opacification differs significantly between AM patients and intensive care patients. Multicenter research is needed to expand our cohort and possibly pave the way to build a non-invasive predictive model for AM in the future

    The role of dynamic magnetic resonance imaging in exclusion of inguinal hernia in patients suffering from indefinitive groin pain

    No full text
    Rationale and objectives: The objective of this study was to analyze the role of dynamic magnetic resonance imaging (MRI) in patients who suffered from groin pain and whose physical examination and ultrasound returned inconclusive/indefinite results, as well as in patients receiving an ongoing assessment for a previous herniotomy. Material and methods: For this study, 25 patients 14 women and 11 men were selected with a mean age of 41.6 years, including clinical complaints, such as groin pain and or a previous herniotomies. These patients underwent dynamic MRI. Reports were created by a radiology resident and a radiology consultant. Clinical and ultrasound documentation were compared to with imaging results from the MRI. Results: The results of the dynamic MRI were negative for 23 patients (92%) and positive for two patients (8%). One patient suffered from an indirect hernia and one from a femoral hernia. A repeated hernia was an excluding for the preoperated patients with pain and ongoing assessment. Conclusions: Dynamic MRI shows substantially higher diagnostic performance in exclusion of inguinal hernia, when compared to a physical examination and ultrasound. The examination can also be used in assessments to analyze the operation’s results

    Potential of high dimensional radiomic features to assess blood components in intraaortic vessels in non-contrast CT scans

    No full text
    Background: To assess the potential of radiomic features to quantify components of blood in intraaortic vessels to non-invasively predict moderate-to-severe anemia in non-contrast enhanced CT scans. Methods: One hundred patients (median age, 69 years; range, 19–94 years) who received CT scans of the thoracolumbar spine and blood-testing for hemoglobin and hematocrit levels ± 24 h between 08/2018 and 11/2019 were retrospectively included. Intraaortic blood was segmented using a spherical volume of interest of 1 cm diameter with consecutive radiomic analysis applying PyRadiomics software. Feature selection was performed applying analysis of correlation and collinearity. The final feature set was obtained to differentiate moderate-to-severe anemia. Random forest machine learning was applied and predictive performance was assessed. A decision-tree was obtained to propose a cut-off value of CT Hounsfield units (HU). Results: High correlation with hemoglobin and hematocrit levels was shown for first-order radiomic features (p < 0.001 to p = 0.032). The top 3 features showed high correlation to hemoglobin values (p) and minimal collinearity (r) to the top ranked feature Median (p < 0.001), Energy (p = 0.002, r = 0.387), Minimum (p = 0.032, r = 0.437). Median (p < 0.001) and Minimum (p = 0.003) differed in moderate-to-severe anemia compared to non-anemic state. Median yielded superiority to the combination of Median and Minimum (p(AUC) = 0.015, p(precision) = 0.017, p(accuracy) = 0.612) in the predictive performance employing random forest analysis. A Median HU value ≤ 36.5 indicated moderate-to-severe anemia (accuracy = 0.90, precision = 0.80). Conclusions: First-order radiomic features correlate with hemoglobin levels and may be feasible for the prediction of moderate-to-severe anemia. High dimensional radiomic features did not aid augmenting the data in our exemplary use case of intraluminal blood component assessment

    Injury patterns of the spine following blunt trauma: A per-segment analysis of spinal structures and their detection rates in CT and MRI

    No full text
    Rationale and objectives: To provide a detailed analysis of injury patterns of the spine following blunt trauma and establish the role of supplementary MRI by evaluating discrepancies in the detection rates of damaged structures in CT and MRI. Method: 216 patients with blunt trauma to the spine who underwent CT followed by supplementary MRI were included in this study. Two board-certified radiologists blinded to clinical symptoms and injury mechanisms independently interpreted all acquired CT and MRI images. The interpretation was performed using a dedicated catalogue of typical findings associated with spinal trauma and assessed for spinal stability using the AO classification systems. Results: Lesions to structures associated with spinal instability were present in 31.0% in the cervical spine, 12.3% in the thoracic spine, and 29.9% in the lumbar spine. In all spinal segments, MRI provided additional information regarding potentially unstable injuries. Novel information derived from supplementary MRI changed clinical management in 3.6% of patients with injury to the cervical spine. No change in clinical management resulted from novel information on the thoracolumbar spine. Patients with injuries to the vertebral body, intervertebral disc, or spinous process were significantly more likely to benefit from supplementary MRI. Conclusion: In patients that sustained blunt spinal trauma, supplementary MRI of the cervical spine should routinely be performed to detect injuries that require surgical treatment, whereas CT is the superior imaging modality for the detection of unstable injuries in the thoracolumbar spine

    Dual-Energy CT Material Decomposition: The Value in the Detection of Lymph Node Metastasis from Breast Cancer

    No full text
    Purpose: To evaluate the diagnostic performance of a dual-energy computed tomography (DECT)-based material decomposition algorithm for iodine quantification and fat fraction analysis to detect lymph node metastases in breast cancer patients. Materials and Methods: 30 female patients (mean age, 63.12 ± 14.2 years) diagnosed with breast cancer who underwent pre-operative chest DECT were included. To establish a reference standard, the study correlated histologic repots after lymphadenectomy or confirming metastasis in previous/follow-up examinations. Iodine concentration and fat fraction were determined through region-of-interest measurements on venous DECT iodine maps. Receiver operating characteristic curve analysis was conducted to identify the optimal threshold for differentiating between metastatic and non-metastatic lymph nodes. Results: A total of 168 lymph nodes were evaluated, divided into axillary (metastatic: 46, normal: 101) and intramammary (metastatic: 10, normal: 11). DECT-based fat fraction values exhibited significant differences between metastatic (9.56 ± 6.20%) and non-metastatic lymph nodes (41.52 ± 19.97%) (p p = 0.7999). The optimal fat fraction threshold for diagnosing metastatic lymph nodes was determined to be 17.75%, offering a sensitivity of 98% and a specificity of 94%. Conclusions: DECT fat fraction analysis emerges as a promising method for identifying metastatic lymph nodes, overcoming the morpho-volumetric limitations of conventional CT regarding lymph node assessment. This innovative approach holds potential for improving pre-operative lymph node evaluation in breast cancer patients, offering enhanced diagnostic accuracy

    Quantitative analysis of in-TIPS thrombosis in abdominal CT

    No full text
    Purpose: To identify transjugular intrahepatic portosystemic shunt (TIPS) thrombosis in abdominal CT scans applying quantitative image analysis. Materials and methods: We retrospectively screened 184 patients to include 20 patients (male, 8; female, 12; mean age, 60.7 ± 8.87 years) with (case, n = 10) and without (control, n = 10) in-TIPS thrombosis who underwent clinically indicated contrast-enhanced and unenhanced abdominal CT followed by conventional TIPS-angiography between 08/2014 and 06/2020. First, images were scored visually. Second, region of interest (ROI) based quantitative measurements of CT attenuation were performed in the inferior vena cava (IVC), portal vein and in four TIPS locations. Minimum, maximum and average Hounsfield unit (HU) values were used as absolute and relative quantitative features. We analyzed the features with univariate testing. Results: Subjective scores identified in-TIPS thrombosis in contrast-enhanced scans with an accuracy of 0.667 – 0.833. Patients with in-TIPS thrombosis had significantly lower average (p < 0.001), minimum (p < 0.001) and maximum HU (p = 0.043) in contrast-enhanced images. The in-TIPS / IVC ratio in contrast-enhanced images was significantly lower in patients with in-TIPS thrombosis (p < 0.001). No significant differences were found for unenhanced images. Analyzing the visually most suspicious ROI with consecutive calculation of its ratio to the IVC, all patients with a ratio < 1 suffered from in-TIPS thrombosis (p < 0.001, sensitivity and specificity = 100%). Conclusion: Quantitative analysis of abdominal CT scans facilitates the stratification of in-TIPS thrombosis. In contrast-enhanced scans, an in-TIPS / IVC ratio < 1 could non-invasively stratify all patients with in-TIPS thrombosis
    corecore