8 research outputs found

    When Security Risk Assessment Meets Advanced Metering Infrastructure: Identifying the Appropriate Method

    No full text
    Leading risk assessment standards such as the NIST SP 800-39 and ISO 27005 state that information security risk assessment (ISRA) is one of the crucial stages in the risk-management process. It pinpoints current weaknesses and potential risks, the likelihood of their materializing, and their potential impact on the functionality of critical information systems such as advanced metering infrastructure (AMI). If the current security controls are insufficient, risk assessment helps with applying countermeasures and choosing risk-mitigation strategies to decrease the risk to a controllable level. Although studies have been conducted on risk assessment for AMI and smart grids, the scientific foundations for selecting and using an appropriate method are lacking, negatively impacting the credibility of the results. The main contribution of this work is identifying an appropriate ISRA method for AMI by aligning the risk assessment criteria for AMI systems with the ISRA methodologies’ characteristics. Consequently, this work makes three main contributions. First, it presents a comprehensive comparison of multiple ISRA methods, including OCTAVE Allegro (OA), CORAS, COBRA, and FAIR, based on a variety of input requirements, tool features, and the type of risk assessment method. Second, it explores the necessary conditions for carrying out a risk assessment for an AMI system. Third, these AMI risk assessment prerequisites are aligned with the capabilities of multiple ISRA approaches to identify the best ISRA method for AMI systems. The OA method is found to be the best-suited risk assessment method for AMI, and this outcome paves the way to standardizing this method for AMI risk assessment

    Forecasting of Groundwater Quality by Using Deep Learning Time Series Techniques in an Arid Region

    No full text
    Groundwater is regarded as the primary source of agricultural and drinking water in semi-arid and arid regions. However, toxic substances released from sources such as landfills, industries, insecticides, and fertilizers from the previous year exhibited extreme levels of groundwater contamination. As a result, it is crucial to assess the quality of the groundwater for agricultural and drinking activities, both its current use and its potential to become a reliable water supply for individuals. The quality of the groundwater is critical in Egypt’s Sohag region because it serves as a major alternative source of agricultural activities and residential supplies, in addition to providing drinking water, and residents there frequently have issues with the water’s suitability for human consumption. This research assesses groundwater quality and future forecasting using Deep Learning Time Series Techniques (DLTS) and long short-term memory (LSTM) in Sohag, Egypt. Ten groundwater quality parameters (pH, Sulfate, Nitrates, Magnesium, Chlorides, Iron, Total Coliform, TDS, Total Hardness, and Turbidity) at the seven pumping wells were used in the analysis to create the water quality index (WQI). The model was tested and trained using actual data over nine years from seven wells in Sohag, Egypt. The high quantities of iron and magnesium in the groundwater samples produced a high WQI. The proposed forecasting model provided good performances in terms of average mean-square error (MSE) and average root-mean-square error (RMSE) with values of 1.6091 × 10−7 and 4.0114 × 10−4, respectively. The WQI model’s findings demonstrated that it could assist managers and policymakers in better managing groundwater resources in arid areas

    Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks

    No full text
    Abstract Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore