4 research outputs found

    Renewable Energy Resources Technologies and Life Cycle Assessment: Review

    No full text
    Moving towards RER has become imperative to achieve sustainable development goals (SDG). Renewable energy resources (RER) are characterized by uncertainty whereas, most of them are unpredictable and variable according to climatic conditions. This paper focuses on RER-based electrical power plants as a base to achieve two different goals, SDG7 (obtaining reasonably priced clean energy) and SDG13 (reducing climate change). These goals in turn would support other environmental, social, and economic SDG. This study is constructed based on two pillars which are technological developments and life cycle assessment (LCA) for wind, solar, biomass, and geothermal power plants. To support the study and achieve the main point, many essential topics are presented in brief such as fossil fuels’ environmental impact, economic sustainability linkage to RER, the current contribution of RER in energy consumption worldwide and barriers and environmental effects of RER under consideration. As a result, solar and wind energy lead the RER electricity market with major contributions of 27.7% and 26.92%, respectively, biomass and geothermal are still of negligible contributions at 4.68% and 0.5%, respectively, offshore HAWT dominated other WT techniques, silicon-based PV cells dominated other solar PV technologies with 27% efficiency, combustion thermochemical energy conversion process dominated other biomass energy systems techniques, due to many concerns geothermal energy system is not preferable. Many emerging technologies need to receive more public attention, intensive research, financial support, and governmental facilities including effective policies and data availability

    Renewable Energy Resources Technologies and Life Cycle Assessment: Review

    No full text
    Moving towards RER has become imperative to achieve sustainable development goals (SDG). Renewable energy resources (RER) are characterized by uncertainty whereas, most of them are unpredictable and variable according to climatic conditions. This paper focuses on RER-based electrical power plants as a base to achieve two different goals, SDG7 (obtaining reasonably priced clean energy) and SDG13 (reducing climate change). These goals in turn would support other environmental, social, and economic SDG. This study is constructed based on two pillars which are technological developments and life cycle assessment (LCA) for wind, solar, biomass, and geothermal power plants. To support the study and achieve the main point, many essential topics are presented in brief such as fossil fuels’ environmental impact, economic sustainability linkage to RER, the current contribution of RER in energy consumption worldwide and barriers and environmental effects of RER under consideration. As a result, solar and wind energy lead the RER electricity market with major contributions of 27.7% and 26.92%, respectively, biomass and geothermal are still of negligible contributions at 4.68% and 0.5%, respectively, offshore HAWT dominated other WT techniques, silicon-based PV cells dominated other solar PV technologies with 27% efficiency, combustion thermochemical energy conversion process dominated other biomass energy systems techniques, due to many concerns geothermal energy system is not preferable. Many emerging technologies need to receive more public attention, intensive research, financial support, and governmental facilities including effective policies and data availability

    An Online Archimedes Optimization Algorithm Identifier-Controlled Adaptive Modified Virtual Inertia Control for Microgrids

    No full text
    Single widespread employment of renewable energy sources (RESs) contributes to the shortage in the inertia of the microgrid (MG). After this, frequency stability may regress as a result of power imbalance or minor load fluctuations. This paper proposes an explicit adaptive modified virtual inertia control (VIC) based on an online Archimedes optimization algorithm (AOA) identifier for MG containing thermal, wind, and solar photovoltaic power plants. The Rung Kutta approach is used to construct the proposed online identifier, which acts as a model of the MG. AOA predicts the coefficients of the online identifier based on the input and output of MG to mimic the frequency deviation of the MG online. AOA estimates online the inertia and damping coefficients of the VIC system with an energy storage device based on online AOA identifier coefficients. The frequency deviation of the MG based on the proposed explicit adaptive modified VIC is compared with the conventional VIC based on fixed parameters and the VIC system based on optimal parameters using AOA offline under mutation in loads, weather-dependent input, and MG parameters using MATLAB/Simulink software. Furthermore, the proposed explicit adaptive modified VIC based on an online AOA identifier is evaluated with the adaptive VIC system based on fuzzy logic control, which adjusts only the inertial gain online. The simulation results demonstrate the capabilities of the proposed explicit adaptive modified VIC to improve the frequency stability and enhance low-inertia islanded MGs with RESs
    corecore