10 research outputs found

    Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems

    Get PDF
    This paper presents a fuzzy goal programming (FGP) procedure for solving bilevel multiobjective linear fractional programming (BL-MOLFP) problems. It makes an extension work of Moitra and Pal (2002) and Pal et al. (2003). In the proposed procedure, the membership functions for the defined fuzzy goals of the decision makers (DMs) objective functions at both levels as well as the membership functions for vector of fuzzy goals of the decision variables controlled by first-level decision maker are developed first in the model formulation of the problem. Then a fuzzy goal programming model to minimize the group regret of degree of satisfactions of both the decision makers is developed to achieve the highest degree (unity) of each of the defined membership function goals to the extent possible by minimizing their deviational variables and thereby obtaining the most satisfactory solution for both decision makers. The method of variable change on the under- and over-deviational variables of the membership goals associated with the fuzzy goals of the model is introduced to solve the problem efficiently by using linear goal programming (LGP) methodology. Illustrative numerical example is given to demonstrate the procedure

    Neutrosophic Non-linear Regression based on Kuhn-Tucker Necessary Conditions

    Get PDF
    Correlation coefficient and regression analysis are the most applied statistical approaches accessible in numerous disciplines due to its applicability and relevance. The neutrosophic sets found their place into recent research, whereas the world is full of indeterminacy. Kuhn-Tuckers necessary conditions are used to obtain the estimated parameters for non-linear regression models. This estimation procedure can use for any data set of non-linear regression models. We present, in this paper, the concepts of neutrosophic correlation and non-linear regression based on Kuhn-Tuckers necessary conditions. we provide some comparative studies between single-valued neutrosophic set and interval-valued neutrosophic set. Next, we apply scoring methods by different research. Numerical example is given to explain the result presented in this study. The results showed that the proposed approach can yield a fitting curve for any data set in neutrosophic environment

    TOPSIS Approach for Solving Bi-Level Non-Linear Fractional MODM Problems

    Get PDF
    TOPSIS (technique for order preference similarity to ideal solution) is considered one of the known classical multiple criteria decision making (MCDM) methods to solve bi-level non-linear fractional multi-objective decision making (BL-NFMODM) problems, and in which the objective function at each level is considered nonlinear and maximization type fractional functions. The proposed approach presents the basic terminology of TOPSIS approach and the construction of membership function for the upper level decision variable vectors, the membership functions of the distance functions from the positive ideal solution (PIS) and of the distance functions from the negative ideal solution (NIS). Thereafter a fuzzy goal programming model is adopted to obtain compromise optimal solution of BL-NFMODM problems. The proposed approach avoids the decision deadlock situations in decision making process and possibility of rejecting the solution again and again by lower level decision makers. The presented TOPSIS technique for BL-NFMODM problems is a new fuzzy extension form of TOPSIS approach suggested by Baky and Abo-Sinna (2013) (Applied Mathematical Modelling, 37, 1004-1015, 2013) which dealt with bi -level multi-objective decision making (BL-MODM) problems. Also, an algorithm is presented of the new fuzzy TOPSIS approach for solving BL-NFMODM problems. Finally, an illustrative numerical example is given to demonstrate the approach

    Stability of multi-objective bi-level linear programming problems under fuzziness

    No full text
    This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC). First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i) Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii) Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration

    An Interactive Dynamic Fuzzy Goal Programming for Bi-level Multiobjective Linear Fractional Programming Problems.

    No full text
    This paper presents an interactive dynamic fuzzy goal programming (DFGP) approach for solving bi-level multiobjective linear fractional programming (BL MOLFP) problems with the characteristics of dynamic programming (DP). In the proposed approach, the membership function of the objective goals of a problem with fuzzy aspiration levels are defined first as the membership function for vector of fuzzy goals of the decision variables controlled by first–level decision maker are developed first in the model formulation of the problem. The method of variable change, on the under and over deviational variables of the membership goals associated with the fuzzy goals of the model, is introduced to solve the problem efficiently by using linear goal programming (LGP) methodology. Then, under the framework of preemptive priority based GP, a multi  stage DP model of the problem is used for achievement of the highest degree (unity) of each of the membership functions. In the decision process, the goal satisficing philosophy of GP is used recursively to arrive at the most satisfactory solution and the suggested algorithm to simplify the solution procedure by DP at each stage is proposed. This paper is considered as an extension work of Mahmoud A. Abo-Sinna and Ibrahim A. Baky (2010) by using dynamic approach. Finally, this approach is illustrated by a given numerical example

    On the solution of Large Scale Bi-Level Linear Vector Optimization Problems through TOPSIS

    No full text
    In this paper, we extend TOPSIS (Technique for Order Preference by Similarity Ideal Solution) for solving Large Scale Bi-level Linear Vector Optimization  Problems (LS-BL-LVOP). In order to obtain a compromise ( satisfactory) solution to the LS-BL-LVOP problems using the proposed TOPSIS approach, a modified formulas for the distance function from the positive ideal solution (PIS ) and the distance function from the negative ideal solution (NIS) are proposed and modeled to include all the objective functions of both the first and the second levels. An  interactive decision  making algorithm for generating a compromise ( satisfactory) solution through TOPSIS approach is provided where the first level decision maker (FLDM) is asked to specify the relative importance of  the objectives. Finally, a numerical example is given to clarify the main results developed in the paper

    An interactive algorithm for large scale multiple objective programming problems with fuzzy parameters through TOPSIS approach

    No full text
    In this paper, we extend TOPSIS (Technique for Order Preference by Similarity Ideal Solution) for solving Large Scale Multiple Objective Programming problems involving fuzzy parameters. These fuzzy parameters are characterized as fuzzy numbers. For such problems, the α-Pareto optimality is introduced by extending the ordinary Pareto optimality on the basis of the α-Level sets of fuzzy numbers. An interactive fuzzy decision making algorithm for generating α-Pareto optimal solution through TOPSIS approach is provided, where a decision maker (DM) is asked to specify the degree α and the relative importance of objectives. Finally, a numerical example is given to clarify the main results developed in the paper
    corecore