12 research outputs found

    Hypoxic Preconditioning as a Strategy to Maintain the Regenerative Potential of Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are non-hematopoietic cells with high proliferative potential and multi-lineage differentiation capacity. MSCs are promising therapeutic candidates for cell-based therapies, and hundreds of clinical trials have been registered using these cells. Potential of stem cells is compromised with the factors such as disease condition and age of donor. Therefore, taking the cells from such patients for autologous use may compromise the benefits of cell-based therapies. It is therefore required to enhance the potential of these cells before use in stem cell-based therapies. Optimization of culture conditions is preferred strategies to enhance the regenerative potential of cells before use. This chapter briefly overviews the benefits of hypoxic preconditioning of stem cells to enhance the regenerative potential of cells in terms of their survival, proliferation, and differentiation

    Umbilical Cord Tissue Derived Mesenchymal Stem Cells Can Differentiate into Skin Cells

    No full text
    Autologous skin grafts are used to treat severe burn wounds, however, the availability of adequate donor sites makes this option less practical. Recently, stem cells have been used successfully in tissue engineering and in regenerative medicine. The current study aims to differentiate umbilical cord tissue derived mesenchymal stem cells (CT-MSCs) into skin cells (fibroblasts and keratinocytes) for use to treat severe burn wounds. After isolation, MSCs were characterized and their growth characteristics were determined. The cells were induced to differentiate into fibroblasts and keratinocytes using respective induction medium. Results indicated that CT-MSCs were spindle shaped, plastic adherent and positive for CD29, CD44, CD73, CD90 markers. CT-MSCs also showed high proliferative potential as indicated by cumulative population doubling, doubling time and plating efficiency. The MSCs were successfully differentiated into fibroblast and keratinocytes as indicated by morphological changes and expression of lineage specific genes. We propose that these differentiated skin cells which are derived from CT-MSCs can thus be used for the development of bioengineered skin; however, further studies are required to evaluate the utility of these substitutes

    In Vitro Differentiation Potential of Human Placenta Derived Cells into Skin Cells

    Get PDF
    Skin autografting is the most viable and aesthetic technique for treatment of extensive burns; however, this practice has potential limitations. Harvesting cells from neonatal sources (such as placental tissue) is a simple, inexpensive, and noninvasive procedure. In the current study authors sought to evaluate in vitro potential of human placenta derived stem cells to develop into skin-like cells. After extensive washing, amniotic membrane and umbilical cord tissue were separated to harvest amniotic epithelial cells (AECs) and umbilical cord mesenchymal stem cells (UC-MSCs), respectively. Both types of cells were characterized for the expression of embryonic lineage markers and their growth characteristics were determined. AECs and UC-MSCs were induced to differentiate into keratinocytes-like and dermal fibroblasts-like cells, respectively. After induction, morphological changes were detected by microscopy. The differentiation potential was further assessed using immunostaining and RT-PCR analyses. AECs were positive for cytokeratins and E-Cadherin while UC-MSCs were positive for fibroblast specific makers. AECs differentiated into keratinocytes-like cells showed positive expression of keratinocyte specific cytokeratins, involucrin, and loricrin. UC-MSCs differentiated into dermal fibroblast-like cells indicated expression of collagen type 3, desmin, FGF-7, fibroblast activation protein alpha, procollagen-1, and vimentin. In conclusion, placenta is a potential source of cells to develop into skin-like cells

    Human Dental Pulp Stem Cells Exhibit Osteogenic Differentiation Potential

    No full text
    Bone regeneration after trauma, pathologic and surgical procedures is considered a major medical challenge. Due to limitations in using conventional approaches, cell based regenerative strategies may provide an alternative option to address such issues. In the current study, we sought to determine the osteogenic potential of dental pulp stem cells (DPSCs) isolated from impacted 3rd molars. DPSCs were isolated from human dental pulp tissue (n=6) using explant culture. Growth characteristics of DPSCs were determined using plating efficiency, and the number and time of population doublings. After characterization, DPSCs were induced to differentiate into osteoblasts and were assessed using polymerase chain reactions (PCR) and histological analysis. Results indicated that DPSCs can be isolated from impacted human third molars, and that DPSCs exhibited typical fibroblastic morphology and excellent proliferative potential. In addition, morphological changes, histological analysis and expression of lineage specific genes confirmed osteogenic differentiation of DPSCs. In conclusion, DPSCs isolated from impacted 3rd molars have high proliferative potential and ability to differentiate into osteoblasts

    RESEARCH Open Access

    No full text
    Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic hear

    Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow

    No full text
    corecore