114 research outputs found

    Особенности строения сеноманской газоконденсатной залежи на Заполярном месторождении (ЯНАО)

    Get PDF
    By focusing fs-laser radiation in the volume of a transparent material the refractive index can be changed locally, leading to 3-dimensional waveguiding structures. Waveguides are written in phosphate glass (IOG from Schott) at a depth of 100 µm below the surface. The pulse energy and the scan velocity are varied. For the first time the optical path difference caused by the waveguides and therefore the refractive index distribution of the waveguides and their cross sections are determined using interference microscopy. The optical path difference measured in the written structures and their cross sections is analyzed by a phase-shift algorithm. Thus, the refractive index distribution both along a line perpendicular to the waveguide and in the plane of a cross section is determined. The results are visualized as 2-dimensional graphics. Several regions of opposite sign of the refractive index change are observed in the cross sections of waveguides generated by femtosecond laser pulses. The number and the size of these regions are increasing with increasing pulse energy and decreasing scan velocity

    Anomalous coupling in radiation mediated shocks}

    Full text link
    We summarize recent attempts to unravel the role of plasma kinetic effects in radiation mediated shocks. Such shocks form in all strong stellar explosions and are responsible for the early electromagnetic emission released from these events. A key issue that has been overlooked in all previous works is the nature of the coupling between the charged leptons, that mediate the radiation force, and the ions, which are the dominant carriers of the shock energy. Our preliminary investigation indicates that in the case of relativistic shocks, as well as Newtonian shocks in multi-ion plasma, this coupling is driven by either, transverse magnetic fields of a sufficiently magnetized upstream medium, or plasma micro-turbulence if strong enough magnetic fields are absent. We discuss the implications for the shock breakout signal, as well as abundance evolution and kilonova emission in binary neutron star mergers.Comment: 8 pages, 2 figures, to appear in Journal of Plasma Physic

    Computational General Relativistic Force-Free Electrodynamics: I. Multi-Coordinate Implementation and Testing

    Full text link
    General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole shadows from the galactic center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as black holes and neutron stars. By this, we probe their role in the formation of high energy phenomena such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and spherical coordinates using the infrastructure of the Einstein Toolkit. The employed hyperbolic/parabolic cleaning of numerical errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of black hole magnetospheres.Comment: 19 pages, 15 figures, submitted to A&

    Three-dimensional dynamics of strongly twisted magnetar magnetospheres: Kinking flux tubes and global eruptions

    Full text link
    The origin of the various outbursts of hard X-rays from magnetars, highly magnetized neutron stars, is still unknown. We identify instabilities in relativistic magnetospheres that can explain a range of X-ray flare luminosities. Crustal surface motions can twist the magnetar magnetosphere by shifting the frozen-in footpoints of magnetic field lines in current-carrying flux bundles. Axisymmetric (2D) magnetospheres exhibit strong eruptive dynamics, as to say, catastrophic lateral instabilities triggered by a critical footpoint displacement of ψcritπ\psi_{\rm crit}\gtrsim\pi. In contrast, our new three-dimensional (3D) twist models with finite surface extension capture important non-axisymmetric dynamics of twisted force-free flux bundles in dipolar magnetospheres. Besides the well-established global eruption resulting (as in 2D) from lateral instabilities, such 3D structures can develop helical, kink-like dynamics, and dissipate energy locally (confined eruptions). Up to 25%25\% of the induced twist energy is dissipated and available to power X-ray flares in powerful global eruptions, with most of our models showing an energy release in the range of the most common X-ray outbursts, 1043\lesssim 10^{43}erg. Such events occur when significant energy builds up deeply buried in the dipole magnetosphere. Less energetic outbursts likely precede powerful flares due to intermittent instabilities and confined eruptions of a continuously twisting flux tube. Upon reaching a critical state, global eruptions produce the necessary Poynting-flux-dominated outflows required by models prescribing the fast radio burst production in the magnetar wind, for example, via relativistic magnetic reconnection or shocks.Comment: 21 pages, 11 figures, submitted to ApJ

    First record of the neotropical subgenus Hylaeus (Gongyloprosopis) Snelling, 1982, for Brazil (Hymenoptera: Colletidae).

    Get PDF
    We report the first record of the neotropical bee subgenus Hylaeus (Gongyloprosopis) Snelling, 1982 (Colletidae) for Brazil. Additionally, an overview of the current geographic records for the three known species of the subgenus is presented. We expand the distribution of Hylaeus (Gongyloprosopis) orbicus (Vachal, 1910), the male is illustrated, and the first floral association with Vismia japurensis Reichardt (Hypericaeae) is reported for this species
    corecore