4,502 research outputs found

    Scaling behavior of interactions in a modular quantum system and the existence of local temperature

    Get PDF
    We consider a quantum system of fixed size consisting of a regular chain of nn-level subsystems, where nn is finite. Forming groups of NN subsystems each, we show that the strength of interaction between the groups scales with N−1/2N^{- 1/2}. As a consequence, if the total system is in a thermal state with inverse temperature β\beta, a sufficient condition for subgroups of size NN to be approximately in a thermal state with the same temperature is N≫βδEˉ\sqrt{N} \gg \beta \bar{\delta E}, where δEˉ\bar{\delta E} is the width of the occupied level spectrum of the total system. These scaling properties indicate on what scale local temperatures may be meaningfully defined as intensive variables. This question is particularly relevant for non-equilibrium scenarios such as heat conduction etc.Comment: 7 pages, accepted for publication in Europhysics Letter

    The German stem cell network GSCN - a nationwide network with many tasks

    Get PDF
    The German Stem Cell Network (GSCN) aims at creating synergies between all areas of basic and applied stem cell research and to provide an interface between science, education, politics and society as a whole. The central task of the GSCN is to pool the expertise in stem cell research in Germany and develop synergies between basic research, regenerative medicine and pharmacology. The initiative promotes innovative research activities on a national and international level. In addition, targeted information and events are offered to encourage the public discourse on stem cell research. The objectives of the network are: To maintain an organizational structure for a German network for basic and applied stem cell research; To organize joint annual conferences on stem cell research to be rotated among German cities; To coordinate scientific and strategic working groups; To provide a platform for communication on stem cell research, enabling exchange of important news, discussions and networking between scientists, institutions, policy-makers and the general public (in German and English); To publish documents about basic and applied stem cell research in Germany and help to organize public meetings and outreach programs on these topics

    Identification of Decoherence-Free Subspaces Without Quantum Process Tomography

    Full text link
    Characterizing a quantum process is the critical first step towards applying such a process in a quantum information protocol. Full process characterization is known to be extremely resource-intensive, motivating the search for more efficient ways to extract salient information about the process. An example is the identification of "decoherence-free subspaces", in which computation or communications may be carried out, immune to the principal sources of decoherence in the system. Here we propose and demonstrate a protocol which enables one to directly identify a DFS without carrying out a full reconstruction. Our protocol offers an up-to-quadratic speedup over standard process tomography. In this paper, we experimentally identify the DFS of a two-qubit process with 32 measurements rather than the usual 256, characterize the robustness and efficiency of the protocol, and discuss its extension to higher-dimensional systems.Comment: 6 pages, 5 figure

    On conjectures and problems of Ruzsa concerning difference graphs of S-units

    Full text link
    Given a finite nonempty set of primes S, we build a graph G\mathcal{G} with vertex set Q\mathbb{Q} by connecting x and y if the prime divisors of both the numerator and denominator of x-y are from S. In this paper we resolve two conjectures posed by Ruzsa concerning the possible sizes of induced nondegenerate cycles of G\mathcal{G}, and also a problem of Ruzsa concerning the existence of subgraphs of G\mathcal{G} which are not induced subgraphs.Comment: 15 page

    The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MEGaSaURA) I: The Sample and the Spectra

    Full text link
    We introduce Project MEGaSaURA: The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N=15 bright gravitationally lensed galaxies at redshifts of 1.68<<z<<3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200<λo<82803200 < \lambda_o < 8280 \AA ; the average spectral resolving power is R=3300. The median spectrum has a signal-to-noise ratio of SNR=21SNR=21 per resolution element at 5000 \AA . As such, the MEGaSaURA spectra have superior signal-to-noise-ratio and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.Comment: Resubmitted to AAS Journals. Data release will accompany journal publication. v2 addresses minor comments from refere

    EXAFS Analysis of Size-Constrained Semiconducting Materials

    Get PDF
    Semiconducting materials such as CdSe, CdS, PbS and GaP are included in crystalline zeolite Y and mordenite and structurally flexible ethylene-methacrylic acid copolymer solid matrices. EXAFS analysis reveals formation of species with dimensions of molecular size up to ca. 13 A in the crystalline hosts, while the polymer matrices allow agglomeration of larger semiconducting particles. Zeolite anchored structures are distinctively different to small particles with bulk crystal structure as usually found in colloidal systems

    Pattern formation in quantum Turing machines

    Get PDF
    We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted to result from a Turing-head (pseudo-spin SS) rotating along a closed Turing-tape (MM additional pseudo-spins). The dynamical evolution of the Bloch-vector of SS, which can be decomposed into 2M2^{M} primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between head and tape. These machines thus provide intuitive examples for quantum parallelism and, at the same time, means for local testing of quantum network dynamics.Comment: Accepted for publication in Phys.Rev.A, 3 figures, REVTEX fil
    • …
    corecore