21 research outputs found
On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process
Quantum metrology uses quantum states with no classical counterpart to
measure a physical quantity with extraordinary sensitivity or precision. Most
metrology schemes measure a single parameter of a dynamical process by probing
it with a specially designed quantum state. The success of such a scheme
usually relies on the process belonging to a particular one-parameter family.
If this assumption is violated, or if the goal is to measure more than one
parameter, a different quantum state may perform better. In the most extreme
case, we know nothing about the process and wish to learn everything. This
requires quantum process tomography, which demands an informationally-complete
set of probe states. It is very convenient if this set is group-covariant --
i.e., each element is generated by applying an element of the quantum system's
natural symmetry group to a single fixed fiducial state. In this paper, we
consider metrology with 2-photon ("biphoton") states, and report experimental
studies of different states' sensitivity to small, unknown collective SU(2)
rotations ("SU(2) jitter"). Maximally entangled N00N states are the most
sensitive detectors of such a rotation, yet they are also among the worst at
fully characterizing an a-priori unknown process. We identify (and confirm
experimentally) the best SU(2)-covariant set for process tomography; these
states are all less entangled than the N00N state, and are characterized by the
fact that they form a 2-design.Comment: 10 pages, 5 figure
Scalable Spatial Super-Resolution using Entangled Photons
N00N states -- maximally path-entangled states of N photons -- exhibit
spatial interference patterns sharper than any classical interference pattern.
This is known as super-resolution. However, even with perfectly efficient
number-resolving detectors, the detection efficiency of all previously
demonstrated methods to measure such interference decreases exponentially with
the number of photons in the N00N state, often leading to the conclusion that
N00N states are unsuitable for spatial measurements. Here, we create spatial
super-resolution fringes with two-, three-, and four-photon N00N states, and
demonstrate a scalable implementation of the so-called ``optical centroid
measurement'' which provides an in-principle perfect detection efficiency.
Moreover, we compare the N00N-state interference to the corresponding classical
super-resolution interference. Although both provide the same increase in
spatial frequency, the visibility of the classical fringes decreases
exponentially with the number of detected photons, while the visibility of our
experimentally measured N00N-state super-resolution fringes remains
approximately constant with N. Our implementation of the optical centroid
measurement is a scalable method to measure high photon-number quantum
interference, an essential step forward for quantum-enhanced measurements,
overcoming what was believed to be a fundamental challenge to quantum
metrology
Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements
While there is a rigorously proven relationship about uncertainties intrinsic
to any quantum system, often referred to as "Heisenberg's Uncertainty
Principle," Heisenberg originally formulated his ideas in terms of a
relationship between the precision of a measurement and the disturbance it must
create. Although this latter relationship is not rigorously proven, it is
commonly believed (and taught) as an aspect of the broader uncertainty
principle. Here, we experimentally observe a violation of Heisenberg's
"measurement-disturbance relationship", using weak measurements to characterize
a quantum system before and after it interacts with a measurement apparatus.
Our experiment implements a 2010 proposal of Lund and Wiseman to confirm a
revised measurement-disturbance relationship derived by Ozawa in 2003. Its
results have broad implications for the foundations of quantum mechanics and
for practical issues in quantum mechanics.Comment: 5 pages, 4 figure
Quantum Data Compression of a Qubit Ensemble
Data compression is a ubiquitous aspect of modern information technology, and
the advent of quantum information raises the question of what types of
compression are feasible for quantum data, where it is especially relevant
given the extreme difficulty involved in creating reliable quantum memories. We
present a protocol in which an ensemble of quantum bits (qubits) can in
principle be perfectly compressed into exponentially fewer qubits. We then
experimentally implement our algorithm, compressing three photonic qubits into
two. This protocol sheds light on the subtle differences between quantum and
classical information. Furthermore, since data compression stores all of the
available information about the quantum state in fewer physical qubits, it
could provide a vast reduction in the amount of quantum memory required to
store a quantum ensemble, making even today's limited quantum memories far more
powerful than previously recognized
Experimental nonlocal and surreal Bohmian trajectories
Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics, predicts trajectories that were at first deemed “surreal” when the second particle is used to probe the position of the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest nonlocality.Full Tex
Passive, broadband and low-frequency suppression of laser amplitude noise to the shot-noise limit using hollow-core fibre
We use hollow-core fibre to preserve the spectrum and temporal profile of
picosecond laser pulses in CBD to suppress 2.6 dB of amplitude noise at MHz
noise frequencies, to within 0.01 dB of the shot-noise limit. We provide an
enhanced version of the CBD scheme that concatenates circuits to suppress over
multiple frequencies and over broad frequency ranges --- we perform a first
demonstration that reduces total excess amplitude noise, between 2 - 6 MHz, by
85%. These demonstrations enable passive, broad-band, all-guided fibre laser
technology operating at the shot-noise limit.Comment: 8 pages, 8 figure
Characterizing an Entangled-Photon Source with Classical Detectors and Measurements
Quantum state tomography (QST) is a universal tool for the design and
optimization of entangled-photon sources. It typically requires single-photon
detectors and coincidence measurements. Recently, it was suggested that the
information provided by the QST of photon pairs generated by spontaneous
parametric down-conversion could be obtained by exploiting the stimulated
version of this process, namely difference frequency generation. In this
protocol, so-called "stimulated-emission tomography" (SET), a seed field is
injected along with the pump pulse, and the resulting stimulated emission is
measured. Since the intensity of the stimulated field can be several orders of
magnitude larger than the intensity of the corresponding spontaneous emission,
measurements can be made with simple classical detectors. Here, we
experimentally demonstrate SET and compare it with QST. We show that one can
accurately reconstruct the polarization density matrix, and predict the purity
and concurrence of the polarization state of photon pairs without performing
any single-photon measurements.Comment: 5+3 pages, 5 figures, 1 tabl