21 research outputs found

    On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process

    Full text link
    Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most metrology schemes measure a single parameter of a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationally-complete set of probe states. It is very convenient if this set is group-covariant -- i.e., each element is generated by applying an element of the quantum system's natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon ("biphoton") states, and report experimental studies of different states' sensitivity to small, unknown collective SU(2) rotations ("SU(2) jitter"). Maximally entangled N00N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a-priori unknown process. We identify (and confirm experimentally) the best SU(2)-covariant set for process tomography; these states are all less entangled than the N00N state, and are characterized by the fact that they form a 2-design.Comment: 10 pages, 5 figure

    Scalable Spatial Super-Resolution using Entangled Photons

    Full text link
    N00N states -- maximally path-entangled states of N photons -- exhibit spatial interference patterns sharper than any classical interference pattern. This is known as super-resolution. However, even with perfectly efficient number-resolving detectors, the detection efficiency of all previously demonstrated methods to measure such interference decreases exponentially with the number of photons in the N00N state, often leading to the conclusion that N00N states are unsuitable for spatial measurements. Here, we create spatial super-resolution fringes with two-, three-, and four-photon N00N states, and demonstrate a scalable implementation of the so-called ``optical centroid measurement'' which provides an in-principle perfect detection efficiency. Moreover, we compare the N00N-state interference to the corresponding classical super-resolution interference. Although both provide the same increase in spatial frequency, the visibility of the classical fringes decreases exponentially with the number of detected photons, while the visibility of our experimentally measured N00N-state super-resolution fringes remains approximately constant with N. Our implementation of the optical centroid measurement is a scalable method to measure high photon-number quantum interference, an essential step forward for quantum-enhanced measurements, overcoming what was believed to be a fundamental challenge to quantum metrology

    Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements

    Full text link
    While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system, often referred to as "Heisenberg's Uncertainty Principle," Heisenberg originally formulated his ideas in terms of a relationship between the precision of a measurement and the disturbance it must create. Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg's "measurement-disturbance relationship", using weak measurements to characterize a quantum system before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003. Its results have broad implications for the foundations of quantum mechanics and for practical issues in quantum mechanics.Comment: 5 pages, 4 figure

    Quantum Data Compression of a Qubit Ensemble

    Full text link
    Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could provide a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized

    Experimental nonlocal and surreal Bohmian trajectories

    Get PDF
    Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics, predicts trajectories that were at first deemed “surreal” when the second particle is used to probe the position of the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest nonlocality.Full Tex

    Passive, broadband and low-frequency suppression of laser amplitude noise to the shot-noise limit using hollow-core fibre

    Get PDF
    We use hollow-core fibre to preserve the spectrum and temporal profile of picosecond laser pulses in CBD to suppress 2.6 dB of amplitude noise at MHz noise frequencies, to within 0.01 dB of the shot-noise limit. We provide an enhanced version of the CBD scheme that concatenates circuits to suppress over multiple frequencies and over broad frequency ranges --- we perform a first demonstration that reduces total excess amplitude noise, between 2 - 6 MHz, by 85%. These demonstrations enable passive, broad-band, all-guided fibre laser technology operating at the shot-noise limit.Comment: 8 pages, 8 figure

    Characterizing an Entangled-Photon Source with Classical Detectors and Measurements

    Full text link
    Quantum state tomography (QST) is a universal tool for the design and optimization of entangled-photon sources. It typically requires single-photon detectors and coincidence measurements. Recently, it was suggested that the information provided by the QST of photon pairs generated by spontaneous parametric down-conversion could be obtained by exploiting the stimulated version of this process, namely difference frequency generation. In this protocol, so-called "stimulated-emission tomography" (SET), a seed field is injected along with the pump pulse, and the resulting stimulated emission is measured. Since the intensity of the stimulated field can be several orders of magnitude larger than the intensity of the corresponding spontaneous emission, measurements can be made with simple classical detectors. Here, we experimentally demonstrate SET and compare it with QST. We show that one can accurately reconstruct the polarization density matrix, and predict the purity and concurrence of the polarization state of photon pairs without performing any single-photon measurements.Comment: 5+3 pages, 5 figures, 1 tabl
    corecore