114 research outputs found

    Radial flow of kaon mesons in heavy ion reactions

    Get PDF
    This work investigates the collective motion of kaons in heavy ion reactions at SIS energies (about 1-2 GeV/nucleon). A radial collective flow of K+K^+ mesons is predicted to exist in central Au + Au collisions, which manifests in a characteristic "shoulder-arm" shape of the transverse mass spectrum of the midrapidity K+K^+ mesons. The K+K^+ radial flow arises from the repulsive K+K^+ mean field in nuclear matter. In spite of a strong reabsorption and rescattering the attractive K−K^- mean field leads as well to a collective radial flow of K−K^- mesons. The K−K^- radial flow, however, is different from that of K+K^+ mesons and can be observed by a characteristic "concave" structure of the transverse mass spectrum of the K−K^- mesons emitted at midrapidity. The kaon radial flows can therefore serve as a novel tool for the investigation of kaon properties in dense nuclear matter.Comment: 30 pages RevTex, 5 PS figures, accepted for publication in Phys. Rev.

    In-medium dependence and Coulomb effects of the pion production in heavy ion collisions

    Get PDF
    The properties of the high energy pions observed in heavy ion collisions, in particular in the system Au on Au at 1 GeV/nucleon are investigated. The reaction dynamics is described within the Quantum Molecular Dynamics (QMD) approach. It is shown that high energy pions freeze out early and originate from the hot, compressed matter. N∗N^*--resonances are found to give an important contribution toward the high energy tail of the pion. Further the role of in-medium effects in the description of charged pion yields and spectra is investigated using a microscopic potential derived from the Brueckner G-matrix which is obtained with the Reid soft-core potential. It is seen that the high energy part of the spectra is relatively more suppressed due to in-medium effects as compared to the low energy part. A comparision to experiments further demonstrates that the present calculations describe reasonably well the neutral (TAPS) and charged (FOPI) pion spectra. The observed energy dependence of the π−/π+\pi^-/\pi^+ ratio, i.e. deviations from the isobar model prediction, is due to Coulomb effects and again indicate that high energy pions probe the hot and dense phase of the reaction. These findings are confirmed independently by a simple phase space analysis.Comment: 28 pages Latex, prepared with elsevier-style, 13 PS-figure

    Effect of chemicals treatment and fiber loading on mechanical properties of borassus (Toddy palm) fiber/epoxy composites

    Get PDF
    Abstract: The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber reinforced epoxy composites. Composites were prepared by hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH), and alkali combined with silane (3- aminopropyltriethoxysilane) treatments on the fibers surface were carried out. Examinations through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made by chemically modified and untreated Borassus fibers were studied using a Universal Testing Machine (UTM). Based on the experimental results, it was found that the tensile properties of the Borassus reinforced epoxy composites were significantly improved, as compared with the neat epoxy. It was also found that the fiber treated with combination of alkali and silane exhibited superior mechanical properties as compared with alkali and untreated fiber composites. The nature of fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites

    Preparation and properties of biodegradable spent tea leaf powder/poly(propylene carbonate) composite films

    Get PDF
    Abstract: The aim of the present work is to develop novel biobased lightweight material with improved tensile and thermal properties. Spent tea leaf powder (STLP) is used as a filler to improve the tensile and thermal properties of polypropylene carbonate (PPC). Tea is an important material of hotels and household and spent tea leaf forms a conjugal solid waste. Composite films are obtained by solution casting method. These films are characterized by Optical microscopy, scanning electron microscopy, Fourier transforms infrared spectroscopy, thermogravimetric analysis and tensile testing to examine the effect of filler content on the properties of the composites. The results have shown that composite films are having increased tensile strength due to enhanced interfacial adhesion between the filler and the matrix. In addition, the composite films have also exhibited higher thermal degradation temperatures compared to pure polypropylene carbonate. The morphology results indicate that there is a good interface interaction between STLP and PPC. Results of the study reveal STLP to be a promising green filler for polymer plastics

    D' Production in Heavy Ion Collisions

    Full text link
    The production of d' dibaryons in heavy ion collisions due to the elementary process NN -> d' + pion is considered. The cross section NN -> d' + pion is estimated using the vacuum d' width = 0.5 MeV extracted from data on the double charge exchange reactions on nuclei. The d' production rate per single collision of heavy ions is estimated at an incident beam energy of 1 A GeV within the framework of the Quantum Molecular Dynamics transport model. We suggest to analyse the invariant mass spectrum of the NN + pion system in order to search for an abundance of events with the invariant mass of the d' dibaryon. The d' peak is found to exceed the statistical fluctuations of the background at a level of 6 standard deviations for 2 10^5 A central collisions of heavy ions with the atomic number A.Comment: 29 pages including 7 figures, REVTe

    Role of the Coulomb interaction in the flow and the azimuthal distribution of kaons from heavy ion reactions

    Get PDF
    Coulomb final-state interaction of positive charged kaons in heavy ion reactions and its impact on the kaon transverse flow and the kaon azimuthal distribution are investigated within the framework of QMD (Quantum Molecular Dynamics) model. The Coulomb interaction is found to tend to draw the flow of kaons away from that of nucleons and lead to a more isotropic azimuthal distribution of kaons in the target rapidity region. The recent FOPI data have been analyzed by taking into accout both the Coulomb interaction and a kaon in-medium potential of the strong interaction. It is found that both the calculated kaon flows with only the Coulomb interaction and with both the Coulomb interaction and the strong potential agree within the error bars with the data. The kaon azimuthal distribution exhibits asymmetries of similar magnitude in both theoretical approaches. This means, the inclusion of the Coulomb potential makes it more difficult to extract information of the kaon mean field potential in nuclear matter from the kaon flow and azimuthal distribution data.Comment: 14 pages Latex, 4 PS-file
    • 

    corecore