2,236 research outputs found

    Quantum information processing using strongly-dipolar coupled nuclear spins

    Get PDF
    Dipolar coupled homonuclear spins present challenging, yet useful systems for quantum information processing. In such systems, eigenbasis of the system Hamiltonian is the appropriate computational basis and coherent control can be achieved by specially designed strongly modulating pulses. In this letter we describe the first experimental implementation of the quantum algorithm for numerical gradient estimation on the eigenbasis of a four spin system.Comment: 5 pages, 5 figures, Accepted in PR

    Concurrent investigation of global motion and form processing in amblyopia: an equivalent noise approach

    Get PDF
    PURPOSE: Directly comparing the motion and form processing in neurologic disorders has remained difficult due to the limitations in the experimental stimulus. In the current study, motion and form processing in amblyopia was characterized using random dot stimuli in different noise levels to parse out the effect of local and global processing on motion and form perception. METHODS: A total of 17 amblyopes (8 anisometropic and 9 strabismic), and 12 visually normal subjects monocularly estimated the global direction of motion and global orientation in random dot kinematograms (RDK) and Glass patterns (Glass), whose directions/orientations were drawn from normal distributions with a range of means and variances that served as external noise. Direction/orientation discrimination thresholds were measured without noise first then variance threshold was measured at the multiples of the direction/orientation threshold. The direction/orientation and variance thresholds were modelled to estimate internal noise and sampling efficiency parameters. RESULTS: Overall, the thresholds for Glass were higher than RDK for all subjects. The thresholds for both Glass and RDK were higher in the strabismic eyes compared with the fellow and normal eyes. On the other hand, the thresholds for anisometropic amblyopic eyes were similar to the normal eyes. The worse performance of strabismic amblyopes was best explained by relatively low sampling efficiency compared with other groups (P < 0.05). CONCLUSIONS: A deficit in global motion and form perception was only evident in strabismic amblyopia. Contrary to the dorsal stream deficiency hypothesis assumed in other developmental disorders, deficits were present in both motion (dorsal) and form (ventral) processing

    Metastability and uniqueness of vortex states at depinning

    Full text link
    We present results from numerical simulations of transport of vortices in the zero-field cooled (ZFC) and the field-cooled (FC) state of a type-II superconductor. In the absence of an applied current II, we find that the FC state has a lower defect density than the ZFC state, and is stable against thermal cycling. On the other hand, by cycling II, surprisingly we find that the ZFC state is the stable state. The FC state is metastable as manifested by increasing II to the depinning current IcI_{c}, in which case the FC state evolves into the ZFC state. We also find that all configurations acquire a unique defect density at the depinning transition independent of the history of the initial states.Comment: 4 pages, 4 figures. Problem of page size correcte

    Inversion of moments to retrieve joint probabilities in quantum sequential measurements

    Full text link
    A sequence of moments encode the corresponding probability distribution. Probing if quantum joint probability distribution can be retrieved from the associated set of moments -- realized in the sequential measurement of a dichotomic observable at different time intervals -- reveals a negative answer i.e., the joint probabilities of sequential measurements do not agree with the ones obtained by inverting the moments. This is indeed a reflection of the non-existence of a bonafide grand joint probability distribution, consistent with all the physical marginal probability distributions. Here we explicitly demonstrate that given the set of moments, it is not possible to retrieve the three-time quantum joint probability distribution resulting from quantum sequential measurement of a single qubit dichotomic observable at three different times. Experimental results using a nuclear magnetic resonance (NMR) system are reported here to corroborate these theoretical observations viz., the incompatibility of the three-time joint probabilties with those extracted from the moment sequence.Comment: 7 pages, 5 figures, RevTe

    Benchmarking quantum control methods on a 12-qubit system

    Full text link
    In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.Comment: 11 pages, 4 figures, to be published in PR
    corecore