2 research outputs found

    An Interoperable Blockchain Security Frameworks Based on Microservices and Smart Contract in IoT Environment

    No full text
    In the Internet of Things (IoT), technological developments have increased the significance of federated cloud systems with integrated cloud providers for exchange transactions. Monolithic IoT systems implement service-oriented architecture (SOA), which is complex for supporting scalability and communicating transactions in a federated cloud system. One weakness of conventional security methods is that they depend on a centralized party, which means there is a single point of failure for the system. In contrast, blockchain (BC) and microservice (MS) technologies allow services to split for independent tasks. In this research paper, we introduce BC security managers based on MS technology for federated cloud systems in an IoT environment. In addition, we present the design of the Federation Security System Manager (FSSM) MS with interoperability features. This enables the exchange of transactions between permissioned BC managers at different cloud providers, with some constraints. Furthermore, a security framework based on MSs and BCs is implemented to ensure security and protect access control. The security functions are deployed based on a smart contract between the permissioned BC managers to achieve interoperability. Finally, we introduce the development process of the proposed framework, which allows for interoperability and ensures the security and privacy of the participating data for a distributed IoT based on the federated cloud system

    A Proposed Framework for Secure Data Storage in a Big Data Environment Based on Blockchain and Mobile Agent

    No full text
    The sum of Big Data generated from different sources is increasing significantly with each passing day to extent that it is becoming challenging for traditional storage methods to store this massive amount of data. For this reason, most organizations have resolved to use third-party cloud storage to store data. Cloud storage has advanced in recent times, but it still faces numerous challenges with regard to security and privacy. This paper discusses Big Data security and privacy challenges and the minimum requirements that must be provided by future solutions. The main objective of this paper is to propose a new technical framework to control and manage Big Data security and privacy risks. A design science research methodology is used to carry out this project. The proposed framework takes advantage of Blockchain technology to provide secure storage of Big Data by managing its metadata and policies and eliminating external parties to maintain data security and privacy. Additionally, it uses mobile agent technology to take advantage of the benefits related to system performance in general. We present a prototype implementation for our proposed framework using the Ethereum Blockchain in a real data storage scenario. The empirical results and framework evaluation show that our proposed framework provides an effective solution for secure data storage in a Big Data environment
    corecore