12 research outputs found

    Complications of calcific tendinitis of the shoulder: a concise review

    Get PDF
    Abstract: Calcific tendinitis (CT) of the rotator cuff (RC) muscles in the shoulder is a disorder which remains asymptomatic in a majority of patients. Once manifested, it can present in different ways which can have negative effects both socially and professionally for the patient. The treatment modalities can be either conservative or surgical. There is poor literature evidence on the complications of this condition with little consensus on the treatment of choice. In this review, the literature was extensively searched in order to study and compile together the complications of CT of the shoulder and present it in a clear form to ease the understanding for all the professionals involved in the management of this disorder. Essentially there are five major complications of CT: pain, adhesive capsulitis, RC tears, greater tuberosity osteolysis and ossifying tendinitis. All the above complications have been explained right from their origin to the control measures required for the relief of the patient. Level of evidence: 5

    Gene/QTL discovery for Anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas

    Get PDF
    Not AvailableCommon bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus Colletotrichum lindemuthianum. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir.Not Availabl

    Gene/QTL discovery for Anthracnose in common bean (<i>Phaseolus vulgaris</i> L.) from North-western Himalayas

    Full text link
    <div><p>Common bean (<i>Phaseolus vulgaris</i> L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus <i>Colletotrichum lindemuthianum</i>. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir.</p></div

    Manhattan plot showing significant MTAs identified using GLM approach of software program TASSEL for Anthracnose resistance.

    Full text link
    <p>(a) Shows MTAs identified from the phenotypic data recorded at Bhaderwah-Jammu, (b) shows MTAs identified from the phenotypic data recorded at SKUAST- Jammu and (c) shows the QQ plots for both locations (SKUAST-Jammu and Bhaderwah Jammu.</p

    Delineating Marker-trait Associations for Fusarium Wilt in Chickpea using Axiom® Cicer SNP Array

    Full text link
    Fusarium wilt (FW) caused by the Fusarium oxysporum f. sp. ciceri is a devastating disease of chickpea (Cicer arietinum L.). To identify promising resistant genotypes and genomic loci for FW resistance, a core set of 179 genotypes of chickpea was tested for FW reactions at seedling and reproductive stages under field as well as controlled conditions in the greenhouse. Our results revealed that at seedling stage, most of the genotypes were found resistant whereas, at the reproductive stage majority of the genotypes were found susceptible. Genotyping using a 50K Axiom®Cicer SNP Array and trait data of FW together led to the identification of 26 significant (p≤E-05) marker-trait associations (MTAs) for FW resistance. Among 26 MTAs, 12 were identified using trait data recorded in the field (3 at seedling and 9 at reproductive stage) and 14 MTAs were identified using trait data recorded under controlled conditions in the greenhouse (6 at seedling and 8 at reproductive stage). The phenotypic variation explained by these MTAs varied from 11.75 to 15.86% with an average of 13.77%. Five MTAs were classified as major, explaining more than 15% phenotypic variation for FW and two MTAs were declared stable, being identified in either two environments or at two growth stages. One of the promising stable and major MTAs (Affx_123280060) detected in field conditions at reproductive stage was also detected in greenhouse conditions at seedling and reproductive stages. The stable and major (>15% PVE) MTAs can be used in chickpea breeding programmes
    corecore