6 research outputs found
Mode conversion enables optical pulling force in photonic crystal waveguides
We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband with naturally occurred lateral equilibriums and has a long manipulation range. Flexibilities of the current configuration make it valuable for the optical force tailoring and optical manipulation operation, especially in microfluidic channel systems
Photon Momentum Transfer In Inhomogeneous Dielectric Mixtures And Induced Tractor Beams
The determination of optical force as a consequence of momentum transfer is inevitably subject to the use of the proper momentum density and stress tensor. It is imperative and valuable to consider the intrinsic scheme of photon momentum transfer, particularly when a particle is embedded in a complex dielectric environment. Typically, we consider a particle submerged in an inhomogeneous background composedofdifferent dielectric materials, excluding coherent illumination or hydrodynamic effects. A ray-tracing method is adopted to capture the direct process of momentum transfer from the complex background medium, and this approach is validated using the modified Einstein-Laub method, which uses only the interior fields of the particle in the calculation. In this way, debates regarding the calculation of the force with different stress tensors using exterior fields can be avoided. Our suggested interpretation supports only the Minkowski approach for the optical momentum transfer to the embedded scatterer while rejecting Peierls\u27s and Abraham\u27s approaches, though the momentum of a stably moving photon in a continuous background medium should be considered to be ofthe Abraham type. Our interpretation also provides a novel methodof realizing a tractor beam for the exertionof negative force that offers an alternative to the use of negative-index materials, optical gain, or highly non-paraxial or multiple-light interference