7 research outputs found

    Combination of Fuzzy Logic and Analytical Hierarchy Process Techniques to Assess Potassium Saturation Percentage of Some Calcareous Soils (Case Study: Fars Province, Southern Iran)

    No full text
    This research was carried out to evaluate the capability of a combined fuzzy logic-based approach and analytical hierarchy process (AHP) for potassium saturation percentage (KSP) estimation in some calcareous soils of southern Iran. Based on a reconnaissance soil survey, 52 soil series were selected and different physical and chemical properties were determined. Five soil parameters including clay, cation exchange capacity, calcium carbonate equivalent, electrical conductivity, and organic carbon were chosen for analysis. Mapping was developed with the kriging method for each parameter. Different fuzzy membership functions were employed and weights for all parameters were calculated according to AHP. Finally, KSP classes were provided for each land unit. Results indicated that about 60% of the studied area is classified as having moderate to high KSP content (>3%) and 40% of had low or very low KSP content (<3%). Then 15 sample points were used for determination of the accuracy of the fuzzy method. Results showed that the fuzzy and AHP methods have a high accuracy for KSP estimation in the studied soils. Further development of the fuzzy and AHP methods would be worthwhile for improving the accuracy of KSP analysis

    Soil-landscape relationship as indicated by pedogenesis data on selected soils from Southwestern, Iran

    No full text
    Soils of semiarid regions of Dehdasht and Choram in Southwestern Iran have formed on alluvium derived from mixed calcareous-gypsiferous materials from Lower Miocene to Upper Pliocene. In order to characterize and classify the soils and to determine the soil-landscape relationship in the area, nine pedons located on different physiographic positions including plateau, river alluvial plain, piedmont plain, alluvial plain and alluvial fan have been described, sampled and analyzed. Physicochemical analyses, clay mineralogy and micromorphological studies were performed. The results showed that topography and parent material were two important soil forming factors affecting soil formation in the area. The soils were dominated by carbonate, gypsum, and clay illuviation and accumulation. More developed soils were found on the stable plateau and piedmont plain. Clay illuviation and argillic horizon development in soils of the more stable alluvial plain were assumed to be relict features from presumably more humid climates. Palygorskite, illite, chlorite, smectite, kaolinite, and quartz clay minerals were identified in almost all physiographic surfaces, but more palygorskite and less smectite were found in the soils with gypsiferous parent materials. Observations by SEM revealed the occurrence of neoformed palygorskite as thread-like faces and coating of gypsum crystals and marly matrix. Coating and infilling of gypsum and calcite crystals in voids and channels were common pedofeatures observed in the soils studied. Two different distribution patterns of Fe-Mn oxides were identified in aquic and non-aquic soils
    corecore