3 research outputs found

    Scheduling trucks in cross docking systems with temporary storage and dock repeat truck holding pattern using GRASP method

    Get PDF
    Cross docking play an important role in management of supply chains where items delivered to a warehouse by inbound trucks are directly sorted out, reorganized based on customer demands, routed and loaded into outbound trucks for delivery to customers without virtually keeping them at the warehouse. If any item is held in storage, it is usually for a short time, which is normally less than 24 hours. The proposed model of this paper considers a special case of cross docking where there is temporary storage and uses GRASP technique to solve the resulted problem for some realistic test problems. In our method, we first use some heuristics as initial solutions and then improve the final solution using GRASP method. The preliminary test results indicate that the GRASP method performs better than alternative solution strategies

    An imperialist competitive algorithm for a bi-objective parallel machine scheduling problem with load balancing consideration

    Get PDF
    In this paper, we present a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective unrelated parallel machine scheduling problem where setup times are sequence dependent. The objectives include mean completion time of jobs and mean squares of deviations from machines workload from their averages. The performance of the proposed ICA (PICA) method is examined using some randomly generated data and they are compared with three alternative methods including particle swarm optimization (PSO), original version of imperialist competitive algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The preliminary results indicate that the proposed study outperforms other alternative methods. In addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to perform better

    An imperialist competitive algorithm for a bi-objective parallel machine scheduling problem with load balancing consideration

    Get PDF
    In this paper, we present a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective scheduling of parallel-unrelated machines where setup times are sequence dependent. The objectives include mean completion tasks and mean squares of deviations from machines workload from their averages. The performance of the proposed ICA (PICA) method is examined using some randomly generated data and they are compared with three alternative methods including particle swarm optimization (PSO), original version of imperialist competitive algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The preliminary results indicate that the proposed study outperforms other alternative methods. In addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to perform better
    corecore