23 research outputs found

    Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping

    Get PDF
    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV)

    Multi-Level Analog Resistive Switching Characteristics in Tri-Layer HfO2/Al2O3/HfO2 Based Memristor on ITO Electrode

    No full text
    Atomic layer deposited (ALD) HfO2/Al2O3/HfO2 tri-layer resistive random access memory (RRAM) structure has been studied with a transparent indium tin oxide (ITO) transparent electrode. Highly stable and reliable multilevel conductance can be controlled by the set current compliance and reset stop voltage in bipolar resistive switching. Improved gradual resistive switching was achieved because of the interdiffusion in the HfO2/Al2O3 interface where tri-valent Al incorporates with HfO2 and produces HfAlO. The uniformity in bipolar resistive switching with Ion/Ioff ratio (>10) and excellent endurance up to >103 cycles was achieved. Multilevel conductance levels in potentiation/depression were realized with constant amplitude pulse train and increasing pulse amplitude. Thus, tri-layer structure-based RRAM can be a potential candidate for the synaptic device in neuromorphic computing

    SnO<sub>2</sub>-Based Memory Device with Filamentary Switching Mechanism for Advanced Data Storage and Computing

    No full text
    In this study, we fabricate a Pt/TiN/SnOx/Pt memory device using reactive sputtering to explore its potential for neuromorphic computing. The TiON interface layer, formed when TiN comes into contact with SnO2, acts as an oxygen vacancy reservoir, aiding the creation of conductive filaments in the switching layer. Our SnOx-based device exhibits remarkable endurance, with over 200 DC cycles, ON/FFO ratio (>20), and 104 s retention. Set and reset voltage variabilities are impressively low, at 9.89% and 3.2%, respectively. Controlled negative reset voltage and compliance current yield reliable multilevel resistance states, mimicking synaptic behaviors. The memory device faithfully emulates key neuromorphic characteristics, encompassing both long-term potentiation (LTP) and long-term depression (LTD). The filamentary switching mechanism in the SnOx-based memory device is explained by an oxygen vacancy concentration gradient, where current transport shifts from Ohmic to Schottky emission dominance across different resistance states. These findings exemplify the potential of SnOx-based devices for high-density data storage memory and revolutionary neuromorphic computing applications

    Quantized synaptic characteristics in HfO2-nanocrystal based resistive switching memory

    No full text
    We demonstrate the reliable resistive switching performance of nanocrystalline-HfO2 inside amorphous-HfOx in TaN/nc-HfO2/ITO memristor structure. Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were utilized to confirm the presence of nc-HfO2 and non-stoichiometric HfOx in the switching layer. In presence of nc-HfO2, quantized conductance was controlled by the narrowing of conductive filaments in an atomic scale applying a very slow voltage sweep. Conductance change under DC voltage shows the quantized conductance states with integer and half-integer multiples of G0 (77.5 μS). Enhanced resistive switching performances with multilevel resistance states behavior were investigated under different current compliance and RESET stop voltages. Short-term plasticity and long-term potentiation, pulse number, and spike rate-dependent plasticity by controlling the magnitude and duration of the input stimulus play a critical role in modulating the post-synaptic conductivity. The combination of nc-HfO2 and amorphous-HfOx in the memristor structure provide promising scope for neuromorphic system applications

    Improved Resistive Switching with Low-Power Synaptic Behaviors of ZnO/Al2O3 Bilayer Structure

    No full text
    In this work, the resistive switching behavior of bilayer ZnO/Al2O3-based resistive-switching random access memory (RRAM) devices is demonstrated. The polycrystalline nature of the ZnO layer confirms the grain boundary, which helps easy oxygen ion diffusion. Multilevel resistance states were modulated under DC bias by varying the current compliance from 0.1 mA to 0.8 mA, the SET operations where the low resistance state of the memristor device was reduced from 25 k&Omega; to 2.4 k&Omega;. The presence of Al2O3 acts as a redox layer and facilitates oxygen vacancy exchange that demonstrates stable gradual conductance change. Stepwise disruption of conductive filaments was monitored depending on the slow DC voltage sweep rate. This is attributed to the atomic scale modulation of oxygen vacancies with four distinct reproducible quantized conductance states, which shows multilevel data storage capability. Moreover, several crucial synaptic properties such as potentiation/depression under identical presynaptic pulses and the spike-rate-dependent plasticity were implemented on ITO/ZnO/Al2O3/TaN memristor. The postsynaptic current change was monitored defining the long-term potentiation by increasing the presynaptic stimulus frequency from 5 Hz to 100 Hz. Moreover, the repetitive pulse voltage stimulation transformed the short-term plasticity to long-term plasticity during spike-number-dependent plasticity

    Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses

    No full text
    In this work, the sputtered deposited WOx/TaOx switching layer has been studied for resistive random-access memory (RRAM) devices. Gradual SET and RESET behaviors with reliable device-to-device variability were obtained with DC voltage sweep cycling without an electroforming process. The memristor shows uniform switching characteristics, low switching voltages, and a high RON/ROFF ratio (~102). The transition from short-term plasticity (STP) to long-term potentiation (LTP) can be observed by increasing the pulse amplitude and number. Spike-rate-dependent plasticity (SRDP) and paired-pulse facilitation (PPF) learning processes were successfully emulated by sequential pulse trains. By reducing the pulse interval, the synaptic weight change increases due to the residual oxygen vacancy near the conductive filaments (CFs). This work explores mimicking the biological synaptic behavior and further development for next-generation neuromorphic applications

    Bipolar and Complementary Resistive Switching Characteristics and Neuromorphic System Simulation in a Pt/ZnO/TiN Synaptic Device

    No full text
    In this work, a ZnO-based resistive switching memory device is characterized by using simplified electrical conduction models. The conventional bipolar resistive switching and complementary resistive switching modes are accomplished by tuning the bias voltage condition. The material and chemical information of the device stack including the interfacial layer of TiON is well confirmed by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The device exhibits uniform gradual bipolar resistive switching (BRS) with good endurance and self-compliance characteristics. Moreover, complementary resistive switching (CRS) is achieved by applying the compliance current at negative bias and increasing the voltage at positive bias. The synaptic behaviors such as long-term potentiation and long-term depression are emulated by applying consecutive pulse input to the device. The CRS mode has a higher array size in the cross-point array structure than the BRS mode due to more nonlinear I–V characteristics in the CRS mode. However, we reveal that the BRS mode shows a better pattern recognition rate than the CRS mode due to more uniform conductance update

    Reversible nonvolatile and threshold switching characteristics in Cu/high-k/Si devices

    No full text

    Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    No full text
    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study
    corecore