13 research outputs found

    Sphingolipids and impaired hypoxic stress responses in Huntington disease.

    Get PDF
    Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD

    PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD.

    Get PDF
    ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset

    It Takes Two to Tango: DPRs in ALS and SCA36.

    No full text
    Dipeptide repeat proteins (DPRs) occur via repeat-associated non-AUG (RAN) translation. In this issue of Neuron, McEachin et al. (2020) show that the aggregation-prone poly(GA)-rich chimeric DPRs determine divergent poly(GP) mediated pathology between C9ALS/FTD and SCA36

    ER strikes again: Proteostasis Dysfunction In ALS

    No full text
    The precise contribution of endoplasmic reticulum (ER) chaperone protein disulfide isomerase (PDI) variants in human amyotrophic lateral sclerosis (ALS) patients to the pathogenesis of ALS remained unclear. In the present study, Woehlbier et al (2016) demonstrated that these PDI variants are capable of altering motor neuron morphology, impairing the expression of synaptic proteins, and compromising neuromuscular junction (NMJ) integrity

    Elective open bedside tracheostomy in the neurosurgical intensive care unit

    No full text
    JCMSBackground and Objectives: Tracheostomy is electively performed in critically ill patients requiring prolonged respiratory support. The risk of transporting, the increasing associated cost and operative room schedule are some of the obstacles for wider acceptance of this procedure. The use of rigid selection criteria exclude many patients who would benefit of this approach. The present study was designed to determine the safety of open bedside tracheostomy (OBT) as a routine intensive care units (ICU) procedure without any selection criteria, considering its peri and postoperative complications.Materials &amp; Methods: Retrospective medical chart review of all patients that underwent elective tracheostomy between June 2014 and January 2015.Results: The study group comprised 52 patients with a mean age of 40.4±15.1 years. The incidence of intra-procedure complications was 5.7% and post-procedure complications was 3.8%.Conclusions: Open bedside tracheostomy seems to be a safe and simple procedure, even when performed by a trained resident under controlled circumstances, and should be considered as an option for ICU patients.JCMS Nepal. 2015;11(1): 9-11</p

    C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress

    No full text
    Hexanucleotide repeat expansions in the C9ORF72 gene are causally associated with frontotemporal lobar dementia (FTLD) and/or amyotrophic lateral sclerosis (ALS). The physiological function of the normal C9ORF72 protein remains unclear. In this study, we characterized the subcellular localization of C9ORF72 to processing bodies (P-bodies) and its recruitment to stress granules (SGs) upon stress-related stimuli. Gain of function and loss of function experiments revealed that the long isoform of C9ORF72 protein regulates SG assembly. CRISPR/Cas9-mediated knockdown of C9ORF72 completely abolished SG formation, negatively impacted the expression of SG-associated proteins such as TIA-1 and HuR, and accelerated cell death. Loss of C9ORF72 expression further compromised cellular recovery responses after the removal of stress. Additionally, mimicking the pathogenic condition via the expression of hexanucleotide expansion upstream of C9ORF72 impaired the expression of the C9ORF72 protein, caused an abnormal accumulation of RNA foci, and led to the spontaneous formation of SGs. Our study identifies a novel function for normal C9ORF72 in SG assembly and sheds light into how the mutant expansions might impair SG formation and cellular-stress-related adaptive responses

    Psychological distress during COVID-19 among pregnant women attending antenatal outpatient department at tertiary hospital: Psychological distress in pregnancy during COVID-19

    No full text
    Introduction: It is known that a pregnant person’s body is undergoing immune system changes and is not operating the same way as a non-pregnant person’s body, which threatens the emotional states of women trying to cope with the COVID-19 pandemic situation. The present study aimed to identify the psychological distress during COVID-19 among pregnant women. Method: A cross-sectional analytical study was conducted at the antenatal outpatient department of Patan Hospital, Nepal. The non-probability purposive sampling technique was used to select 457 samples. Ethical approval was obtained. Data were collected through a face-to-face interview using the Coronavirus Anxiety Scale (5 items) and the Edinburgh Postnatal Depression Scale (10 items). Descriptive and inferential statistics were used for analyzing the data. Result: The average age of the respondents was 27 years. Results revealed that only 5(1.1%) pregnant women had anxiety, while 23(5.0%) had possible depression due to COVID-19. None of the sociodemographic variables were significantly associated with psychological distress (anxiety and depression) among pregnant women. Conclusion: Psychological distress was found to be minimal among pregnant women attending antenatal OPD in Patan Hospital. Keywords: COVID-19, pregnant women, psychological distress

    Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD.

    No full text
    The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9 open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated non-AUG (RAN) translation. Five different DPRs are currently known to be formed: glycine-alanine (GA) and glycine-arginine (GR) from the sense strand, proline-alanine (PA), and proline-arginine (PR) from the antisense strand, and glycine-proline (GP) from both strands. The exact contribution of each DPR to disease pathology is currently under intense scrutiny and is still poorly understood. However, recent advances in both neuropathological and cellular studies have provided us with clues enabling us to better understand the effect of individual DPRs on disease pathogenesis. In this review, we compile the current knowledge of specific DPR involvement on disease development and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar protein quality control, the correlation of poly-GR with neurodegeneration, and the possible involvement of chimeric DPR species. Further, we discuss recent findings regarding the mechanisms of RAN translation, its modulators, and other promising therapeutic options

    Aberrant association of misfolded SOD1 with Na+/K+ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS.

    No full text
    Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology
    corecore