12 research outputs found

    Enhanced UV Light emission from Silicon nanoparticles induced by Au ion implantation

    Full text link
    Study of light emitting silicon fabricated by ion implantation.Comment: G-COE Conference - Kyoto 2008 abstrac

    Physico-chemical and biological characterization of urban municipal landfill leachate

    No full text
    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/ls and similar to 2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate. (C) 2016 Elsevier Ltd. All rights reserved.

    Heavy flavour decay muon production at forward rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at √s=7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint=16.5 nb−1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5<y<4, over the transverse momentum range 2<pt<12 GeV/c. The results are compared to predictions based on perturbative QCD calculations

    Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    No full text
    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive Υ(1S) and Υ(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the Υ(1S) and Υ(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Υ(1S). A suppression of the inclusive Υ(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects
    corecore