38 research outputs found

    Cu isotopes in groundwater for hydrogeochemical mineral exploration: A case study using the world-class Mount Isa Cu–Pb–Zn deposit (Australia)

    Get PDF
    Copper is the crux resource in the transition to renewable energy sources, with green technologies such as solar panels, wind turbines and batteries all relying on this critical metal for their componentry, and more importantly for connection to electrical grids. While demand intensifies, copper discovery rates continue to fall due to increased scarcity of deposits that are outcropping and/or detectable by conventional means. This has engendered novel methods of detecting Cu-bearing ore under cover, such as hydrogeochemical analyses to trace ore mineral interaction with natural waters. This notably includes the development of Cu isotope systematics in natural waters, wherein proximal to Cu-bearing ore bodies enrichment of water in the heavier Cu isotope occurs (e.g. from oxidative weathering), thus providing a fingerprint of water interaction with Cu-bearing sulfides. Here, Cu isotope compositions for eighteen groundwater samples overlying and distal to the world-class, sediment-hosted stratiform Mount Isa Cu–Zn–Pb deposit were analyzed to assess the utility of groundwater Cu isotope compositions as an exploration tool for Cu-bearing ore under cover. A further 12 chalcopyrite Cu isotope compositions were determined from two drill cores directly overlying the main Cu-bearing ore body, to establish a baseline Cu isotope composition for the Mt Isa deposit. Cu isotope data were synthesized together with field water parameters and placed within a geological context to construct a framework for interpretation. When accounting for industrially impacted sites and underlying geology, results show a clear trend towards heavy Cu isotope enrichment in groundwater proximal to known mineralization, with enrichments of ∼1 per mil (‰) or more relative to distal groundwater and primary deposit chalcopyrite. These results corroborate and expand upon similar work from surface and groundwater samples around porphyry, exotic and IOCG Cu-bearing deposits. Moreover, these results strongly indicate that groundwater Cu isotope systematics for exploration under cover has great potential as a vectoring tool, illustrating that thus far the technique is applicable across deposit types

    A magmatic copper and fluid source for the sediment-hosted Mount Isa deposit

    Get PDF
    The world class Mount Isa deposit is a unique, sediment-hosted, copper deposit with no known equivalent around the world and a controversial origin. We report δ65Cu values (n = 90) from chalcopyrite grains collected systematically across the entire deposit. The δ65Cu shows a unimodal distribution with limited variability (min = −0.87 ‰; max = 0.88 ‰) and an average value (+0.13 ‰) comparable to average igneous rocks. In general, the δ65Cu values in chalcopyrite are lower near major structures and heavier further away, consistent with equilibrium fractionation with distance from the fluid source. The range in δ65Cu of chalcopyrite from the Mount Isa deposit is less variable compared to sedimentary copper, VMS and porphyry/epithermal deposits, but similar to Michigan deposits; meanwhile, average δ65Cu at Mt. Isa is distinctly higher than sedimentary copper deposits, but similar to VMS, porphyry/epithermal and Michigan deposits. These data suggest that, from a copper isotope perspective, the Mount Isa deposit is clearly different from sedimentary copper deposits and more like VMS, porphyry copper/epithermal and Michigan style deposits. The average δ65Cu (+0.13 ‰) is almost identical to the average δ65Cu (+0.14 ‰) from Proterozoic basalts and suggests that copper was sourced from the underlying mafic rocks; the limited fractionation and the normal distribution of the δ65Cu indicate a very effective leaching mechanism and transport by a hot fluid from which chalcopyrite precipitated without significant fractionation of copper isotopes

    Thermoelectric Behaviour Near Magnetic Quantum Critical Point

    Full text link
    We use the coupled 2d-spin-3d-fermion model proposed by Rosch {\sl et. al.} (Phys. Rev. Lett. {\bf 79}, 159 (1997)) to study the thermoelectric behaviour of a heavy fermion compound when it is close to an antiferromagnetic quantum critical point. When the low energy spin fluctuations are quasi two dimensional, as has been observed in YbRh2Si2{\rm YbRh}_2{\rm Si}_2 and CeCu6xAux {\rm CeCu}_{6-x}{\rm Au}_x , with a typical 2d ordering wavevector and 3d Fermi surface, the ``hot'' regions on the Fermi surface have a finite area. Due to enhanced scattering with the nearly critical spin fluctuations, the electrons in the hot region are strongly renormalized. We argue that there is an intermediate energy scale where the qualitative aspects of the renormalized hot electrons are captured by a weak-coupling perturbative calculation. Our examination of the electron self energy shows that the entropy carried by the hot electrons is larger than usual. This accounts for the anomalous logarithmic temperature dependence of specific heat observed in these materials. We show that the same mechanism produces logarithmic temperature dependence in thermopower. This has been observed in CeCu6xAux {\rm CeCu}_{6-x}{\rm Au}_x . We expect to see the same behaviour from future experiments on YbRh2Si2{\rm YbRh}_2{\rm Si}_2.Comment: RevTex, two-column, 7 pages, 2 figure

    Fingerprinting the Cretaceous-Paleogene boundary impact with Zn isotopes

    Get PDF
    Numerous geochemical anomalies exist at the K-Pg boundary that indicate the addition of extraterrestrial materials; however, none fingerprint volatilization, a key process that occurs during large bolide impacts. Stable Zn isotopes are an exceptional indicator of volatility-related processes, where partial vaporization of Zn leaves the residuum enriched in its heavy isotopes. Here, we present Zn isotope data for sedimentary rock layers of the K-Pg boundary, which display heavier Zn isotope compositions and lower Zn concentrations relative to surrounding sedimentary rocks, the carbonate platform at the impact site, and most carbonaceous chondrites. Neither volcanic events nor secondary alteration during weathering and diagenesis can explain the Zn concentration and isotope signatures present. The systematically higher Zn isotope values within the boundary layer sediments provide an isotopic fingerprint of partially evaporated material within the K-Pg boundary layer, thus earmarking Zn volatilization during impact and subsequent ejecta transport associated with an impact at the K-Pg

    Interaction-Induced Enhancement of Spin-Orbit Coupling in Two-Dimensional Electronic System

    Full text link
    We study theoretically the renormalization of the spin-orbit coupling constant of two-dimensional electrons by electron-electron interactions. We demonstrate that, similarly to the gg factor, the renormalization corresponds to the enhancement, although the magnitude of the enhancement is weaker than that for the gg factor. For high electron concentrations (small interaction parameter rsr_s) the enhancement factor is evaluated analytically within the static random phase approximation. For large rs10r_s\sim 10 we use an approximate expression for effective electron-electron interaction, which takes into account the local field factor, and calculate the enhancement numerically. We also study the interplay between the interaction-enhanced Zeeman splitting and interaction-enhanced spin-orbit coupling.Comment: 18 pages, 2 figures, REVTe

    Singular Fermi Liquids

    Full text link
    An introductory survey of the theoretical ideas and calculations and the experimental results which depart from Landau Fermi-liquids is presented. Common themes and possible routes to the singularities leading to the breakdown of Landau Fermi liquids are categorized following an elementary discussion of the theory. Soluble examples of Singular Fermi liquids (often called Non-Fermi liquids) include models of impurities in metals with special symmetries and one-dimensional interacting fermions. A review of these is followed by a discussion of Singular Fermi liquids in a wide variety of experimental situations and theoretical models. These include the effects of low-energy collective fluctuations, gauge fields due either to symmetries in the hamiltonian or possible dynamically generated symmetries, fluctuations around quantum critical points, the normal state of high temperature superconductors and the two-dimensional metallic state. For the last three systems, the principal experimental results are summarized and the outstanding theoretical issues highlighted.Comment: 170 pages; submitted to Physics Reports; a single pdf file with high quality figures is available from http://www.lorentz.leidenuniv.nl/~saarloo

    Some basic aspects of quantum phase transitions

    Full text link
    Several basic problems of the theory of quantum phase transitions are reviewed. The effect of the quantum correlations on the phase transition properties is considered with the help of basic models of statistical physics. The effect of quenched disorder on the quantum phase transitions is also discussed. The review is performed within the framework of the thermodynamic scaling theory and by the most general methods of statistical physics for the treatment of phase transitions: general length-scale arguments, exact solutions, mean field approximation, Hubbard-Stratonovich transformation, Feynman path integral approach, and renormalization group in the field theoretical variant. Some new ideas and results are presented. Outstanding theoretical problems are mentioned.Comment: 81 pages, Latex2e, 8 figures, Phys. Rep.(2003) in pres

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore