2,962 research outputs found

    Pairing based cooling of Fermi gases

    Full text link
    We propose a pairing-based method for cooling an atomic Fermi gas. A three component (labels 1, 2, 3) mixture of Fermions is considered where the components 1 and 2 interact and, for instance, form pairs whereas the component 3 is in the normal state. For cooling, the components 2 and 3 are coupled by an electromagnetic field. Since the quasiparticle distributions in the paired and in the normal states are different, the coupling leads to cooling of the normal state even when initially Tpaired≥TnormalT_{paired}\geq T_{normal} (notation TS≥TNT_S\geq T_N). The cooling efficiency is given by the pairing energy and by the linewidth of the coupling field. No superfluidity is required: any type of pairing, or other phenomenon that produces a suitable spectral density, is sufficient. In principle, the paired state could be cooled as well but this requires TN<TST_N<T_S. The method has a conceptual analogy to cooling based on superconductor -- normal metal (SN) tunneling junctions. Main differences arise from the exact momentum conservation in the case of the field-matter coupling vs. non-conservation of momentum in the solid state tunneling process. Moreover, the role of processes that relax the energy conservation requirement in the tunneling, e.g. thermal fluctuations of an external reservoir, is now played by the linewidth of the field. The proposed method should be experimentally feasible due to its close connection to RF-spectroscopy of ultracold gases which is already in use.Comment: Journal version 4 pages, 4 figure

    Electron-phonon heat transfer in monolayer and bilayer graphene

    Full text link
    We calculate the heat transfer between electrons to acoustic and optical phonons in monolayer and bilayer graphene (MLG and BLG) within the quasiequilibrium approximation. For acoustic phonons, we show how the temperature-power laws of the electron-phonon heat current for BLG differ from those previously derived for MLG and note that the high-temperature (neutral-regime) power laws for MLG and BLG are also different, with a weaker dependence on the electronic temperature in the latter. In the general case we evaluate the heat current numerically. We suggest that a measurement of the heat current could be used for an experimental determination of the electron-acoustic phonon coupling constants, which are not accurately known. However, in a typical experiment heat dissipation by electrons at very low temperatures is dominated by diffusion, and we estimate the crossover temperature at which acoustic-phonon coupling takes over in a sample with Joule heating. At even higher temperatures optical phonons begin to dominate. We study some examples of potentially relevant types of optical modes, including in particular the intrinsic in-plane modes, and additionally the remote surface phonons of a possible dielectric substrate.Comment: 13 pages, 8 figures; moved details to appendixes, added discussion of remote phonon

    Signatures of superfluidity for Feshbach-resonant Fermi gases

    Full text link
    We consider atomic Fermi gases where Feshbach resonances can be used to continuously tune the system from weak to strong interaction regime, allowing to scan the whole BCS-BEC crossover. We show how a probing field transferring atoms out of the superfluid can be used to detect the onset of the superfluid transition in the high-TcT_c and BCS regimes. The number of transferred atoms, as a function of the energy given by the probing field, peaks at the gap energy. The shape of the peak is asymmetric due to the single particle excitation gap. Since the excitation gap includes also a pseudogap contribution, the asymmetry alone is not a signature of superfluidity. Incoherent nature of the non-condensed pairs leads to broadening of the peak. The pseudogap and therefore the broadening decay below the critical temperature, causing a drastic increase in the asymmetry. This provides a signature of the transition.Comment: Revised version, accepted to Phys. Rev. Letters. Figures changed, explanations adde

    Eigenstate thermalization within isolated spin-chain systems

    Full text link
    The thermalization phenomenon and many-body quantum statistical properties are studied on the example of several observables in isolated spin-chain systems, both integrable and generic non-integrable ones. While diagonal matrix elements for non-integrable models comply with the eigenstate thermalization hypothesis (ETH), the integrable systems show evident deviations and similarity to properties of noninteracting many-fermion models. The finite-size scaling reveals that the crossover between two regimes is given by a scale closely related to the scattering length. Low-frequency off-diagonal matrix elements related to d.c. transport quantities in a generic system also follow the behavior analogous to the ETH, however unrelated to the one of diagonal elements

    Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime

    Full text link
    We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of 2020 K in the strong coupling regime.Comment: To appear in PR

    Exact Kohn-Sham eigenstates versus quasiparticles in simple models of strongly correlated electrons

    Get PDF
    We present analytic expressions for the exact density functional and Kohn-Sham Hamiltonian of simple tight-binding models of correlated electrons. These are the single- and double-site versions of the Anderson, Hubbard and spinless fermion models. The exact exchange and correlation potentials are fully non-local. The analytic expressions allow to compare the Kohn-Sham eigenstates of exact density functional theory with the many-body quasi-particle states of these correlated-electron systems. The exact Kohn-Sham spectrum describes correctly many of the non-trivial features of the many-body quasi-particle spectrum, as for example the precursors of the Kondo peak. However, we find that some pieces of the quasi-particle spectrum are missing because the many-body phase-space for electron and hole excitations is richer

    Polaronic slowing of fermionic impurities in lattice Bose-Fermi mixtures

    Full text link
    We generalize the application of small polaron theory to ultracold gases of Ref. [\onlinecite{jaksch_njp1}] to the case of Bose-Fermi mixtures, where both components are loaded into an optical lattice. In a suitable range of parameters, the mixture can be described within a Bogoliubov approach in the presence of fermionic (dynamic) impurities and an effective description in terms of polarons applies. In the dilute limit of the slow impurity regime, the hopping of fermionic particles is exponentially renormalized due to polaron formation, regardless of the sign of the Bose-Fermi interaction. This should lead to clear experimental signatures of polaronic effects, once the regime of interest is reached. The validity of our approach is analyzed in the light of currently available experiments. We provide results for the hopping renormalization factor for different values of temperature, density and Bose-Fermi interaction for three-dimensional 87Rb−40K^{87}\rm{Rb}-^{40}\rm{K} mixtures in optical lattice.Comment: 13 pages, 5 figure

    Vibrational coherence in electron spin resonance in nanoscale oscillators

    Full text link
    We study a scheme for electrical detection, using electron spin resonance, of coherent vibrations in a molecular single electron level trapped near a conduction channel. Both equilibrium spin-currents and non-equilibrium spin- and charge currents are investigated. Inelastic side-band anti-resonances corresponding to the vibrational modes appear in the electron spin resonance spectrum.Comment: 4 pages, 3 figures: Published versio

    Raman scattering near a d-wave Pomeranchuk instability

    Full text link
    Motivated by recent transport and neutron scattering experiments suggesting an orientational symmetry breaking in underdoped cuprates we present a theoretical study of Raman scattering near a d-wave Pomeranchuk instability (PI). The d-wave component of Raman scattering from electrons and phonons allows to study directly order parameter fluctuations associated with the PI. Approaching the PI from the normal state by lowering the temperature a central peak emerges both in electronic and, as an additional low-frequency feature, in phononic scattering. Approaching the PI in the superconducting state at low temperature by decreasing the doping concentration the central peak is replaced by a soft mode with strongly decreasing width and energy and increasing spectral weight. These predicted low-energy features in Raman scattering could confirm in a rather direct way the presence of a PI in high-temperature cuprate superconductors and in Sr3Ru2O7.Comment: 26 pages, 9 figure

    Self-localized impurities embedded in a one dimensional Bose-Einstein condensate and their quantum fluctuations

    Full text link
    We consider the self-localization of neutral impurity atoms in a Bose-Einstein condensate in a 1D model. Within the strong coupling approach, we show that the self-localized state exhibits parametric soliton behavior. The corresponding stationary states are analogous to the solitons of non-linear optics and to the solitonic solutions of the Schroedinger-Newton equation (which appears in models that consider the connection between quantum mechanics and gravitation). In addition, we present a Bogoliubov-de-Gennes formalism to describe the quantum fluctuations around the product state of the strong coupling description. Our fluctuation calculations yield the excitation spectrum and reveal considerable corrections to the strong coupling description. The knowledge of the spectrum allows a spectroscopic detection of the impurity self-localization phenomenon.Comment: 7 pages, 5 figure
    • …
    corecore