33 research outputs found
Recommended from our members
Modelling the generation of toxic combustion products and its transport in enclosure fires
Combustion products generated in enclosure fires can be transported throughout the enclosure causing death and injury to occupants and a great deal of damage to property and the environment. The ability to estimate the generation and transport of toxic combustion products in real fire scenarios involving common building materials is of great importance to fire protection engineers in producing detailed quantified risk assessment and in the design of fire-safe buildings. Most common building materials are polymer based. Thus toxic products evolving from burning polymers is the single most important factor in fire fatalities. Fire hazard calculations require modelling of heat generation, toxic combustion products generation and its transport in realistic building scenarios involving common building materials. However, the thermal decomposition, combustion behaviour and chemical kinetics for common polymers like wood, plastics, rubber and textiles are extremely complex. In the present study, a methodology (STEM-LER: the Scalar Transport Equation based Model using the Local Equivalence Ratio concept) based on solving separate transport equations for the species and using the yield correlations obtained from bench-scale experiments to model the source terms is proposed to predict the products generation and its transport during enclosure fires. Modelling of complex solid phase degradation and chemical kinetics of polymers is bypassed by measuring the product yields as a function of equivalence ratio by burning the samples in a bench-scale combustion apparatus called Purser furnace. Since the accuracy of prediction depends upon the quality of the yield data obtained from the Purser furnace, attempts were also made to numerically investigate this bench-scale toxicity test method in order to understand its modus operandi
Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement
The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away
A study of influence of material properties on magnetic flux density induced in magneto rheological damper through finite element analysis
Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force) is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod). The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid) is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case
A study of influence of material properties on magnetic flux density induced in magneto rheological damper through finite element analysis
Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force) is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod). The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid) is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case
Recommended from our members
Simulation of the flow induced by positive pressure ventilation fan under wind driven conditions
Positive Pressure Ventilation (PPV) is a tactical forced ventilation technique used by many fire departments to remove smoke, heat and contaminants from a burning building. PPV usage as a post fire strategy is generally proven and widely accepted as an effective ventilation tool. However, its success as a pre-attack strategy in controlling the spread of fire and smoke is only ensured when it is used correctly and with caution. The efficiency of PPV depends mainly upon net air flow rate through the fire structure. The amount of fresh air blown into the building during a PPV attack is affected by various factors such as fan capacity, distance between the fan and inlet door, inlet dimensions, exhaust opening area, wind and fire conditions etc. Computational Fluid Dynamics (CFD) is a useful and costeffective tool in improving our understanding on various factors affecting the effectiveness of PPV and could be used to improve both the fire fighter and fire victim’s safety. In the present investigation, the SMARTFIRE CFD fire field model is validated using two full-scale experiments characterising a PPV fan. This work is extended by investigating the relationship between the exhaust/inlet area ratio and the net air flow rate into the room geometry under wind and no wind conditions. Finally, results from the simulations of a complex multi-storey structure involving wind driven fire and PPV fan are also presented. Suggestions have been made on the choice of vent locations for better fan performance
Recommended from our members
Modelling generation and transport of toxic combustion products in enclosure fires using bench-scale test data
Detection of Interleukin-6 Protein Using Graphene Field-Effect Transistor
Universal platforms to analyze biomolecules using sensor devices can address critical diagnostic challenges. Sensor devices like electrical-based field-effect transistors play an essential role in sensing biomolecules by charge probing. Graphene-based devices are more suitable for these applications. It has been previously reported that Graphene Field-Effect Transistor (GFET) devices detect DNA hybridization, pH sensors, and protein molecules. Graphene became a promising material for electrical-based field-effect transistor devices in sensing biomarkers, including biomolecules and proteins. In the last decade, FET devices have detected biomolecules such as DNA molecules, pH, glucose, and protein. These studies have suggested that the reference electrode is placed externally and measures the transfer characteristics. However, the external probing method damages the samples, requiring safety measurements and a substantial amount of time. To control this problem, the graphene field-effect transistor (GFET) device is fabricated with an inbuilt gate that acts as a reference electrode to measure the biomolecules. Herein, the monolayer graphene is exfoliated, and the GFET is designed with an in-built gate to detect the Interleukin-6 (IL-6) protein. IL-6 is a multifunctional cytokine which plays a significant role in immune regulation and metabolism. Additionally, IL-6 subsidizes a variability of disease states, including many types of cancer development, and metastasis, progression, and increased levels of IL-6 are associated with a higher risk of cancer and can also serve as a prognostic marker for cancer. Here, the protein is desiccated on the GFET device and measured, and Dirac point shifting in the transfer characteristics systematically evaluates the device’s performance. Our work yielded a conductive and electrical response with the IL-6 protein. This graphene-based transducer with an inbuilt gate gives a promising platform to enable low-cost, compact, facile, real-time, and sensitive amperometric sensors to detect IL-6. Targeting this pathway may help develop treatments for several other symptoms, such as neuromyelitis optica, uveitis, and, more recently, COVID-19 pneumonia
Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development
Energy storage and conversion are critical components of modern energy systems, enabling the integration of renewable energy sources and the optimization of energy use. These technologies play a key role in reducing greenhouse gas emissions and promoting sustainable development. Supercapacitors play a vital role in the development of energy storage systems due to their high power density, long life cycles, high stability, low manufacturing cost, fast charging-discharging capability and eco-friendly. Molybdenum disulfide (MoS2) has emerged as a promising material for supercapacitor electrodes due to its high surface area, excellent electrical conductivity, and good stability. Its unique layered structure also allows for efficient ion transport and storage, making it a potential candidate for high-performance energy storage devices. Additionally, research efforts have focused on improving synthesis methods and developing novel device architectures to enhance the performance of MoS2-based devices. This review article on MoS2 and MoS2-based nanocomposites provides a comprehensive overview of the recent advancements in the synthesis, properties, and applications of MoS2 and its nanocomposites in the field of supercapacitors. This article also highlights the challenges and future directions in this rapidly growing field
Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies
The rapidly growing global demand for pollutant-free cooking energy has proliferated the research and development of energy efficient and clean cook-stoves. This paper presents a comprehensive review on the gradual improvements in cook-stove designs, focusing on gaseous and liquid fuel-operated cook-stoves around the world. Various literatures concerning the technical aspects such as design and testing, are brought together to provide an insight into the present status of developments in cook-stoves. This review of cook-stove performance covers topics such as stable operating conditions, flame propagation aspects, heat transfer and temperature distribution within the burner, fuel consumption, thermal efficiency, and emissions. Covering both laboratory-scale and field studies, the various cook-stove technologies reported so far are summarized with relevant comments regarding their commercial viabilities. The numerical modeling of combustion in cook-stoves; human health and the environmental impacts of unclean cooking technologies; and various schemes, strategies, and governmental initiatives for the promotion of cleaner cooking practices are also presented, with suggestions for future work