6 research outputs found

    Metabolomic Profiling of Nicotiana Spp. Nectars Indicate That Pollinator Feeding Preference Is a Stronger Determinant Than Plant Phylogenetics in Shaping Nectar Diversity

    Get PDF
    Floral nectar is a rich secretion produced by the nectary gland and is offered as reward to attract pollinators leading to improved seed set. Nectars are composed of a complex mixture of sugars, amino acids, proteins, vitamins, lipids, organic and inorganic acids. This composition is influenced by several factors, including floral morphology, mechanism of nectar secretion, time of flowering, and visitation by pollinators. The objective of this study was to determine the contributions of flowering time, plant phylogeny, and pollinator selection on nectar composition in Nicotiana. The main classes of nectar metabolites (sugars and amino acids) were quantified using gas chromatography/mass spectrometric analytical platforms to identify differences among fifteen Nicotiana species representing day- and night-flowering plants from ten sections of the genus that are visited by five different primary pollinators. The nectar metabolomes of different Nicotiana species can predict the feeding preferences of the target pollinator(s) of each species, and the nectar sugars (i.e., glucose, fructose, and sucrose) are a distinguishing feature of Nicotiana species phylogeny. Moreover, comparative statistical analysis indicate that pollinators are a stronger determinant of nectar composition than plant phylogeny

    Systems analyses of key metabolic modules of floral and extrafloral nectaries of cotton

    Get PDF
    Nectar is a primary reward mediating plant-animal mutualisms to improve plant fitness and reproductive success. In Gossypium hirsutum (cotton), four distinct trichomatic nectaries develop, one floral and three extrafloral. The secreted floral and extrafloral nectars serve different purposes, with the floral nectar attracting bees to promote pollination and the extrafloral nectar attracting predatory insects as a means of indirect resistance from herbivores. Cotton therefore provides an ideal system to contrast mechanisms of nectar production and nectar composition between floral and extrafloral nectaries. Here, we report the transcriptome, ultrastructure, and metabolite spatial distribution using mass spectrometric imaging of the four cotton nectary types throughout development. Additionally, the secreted nectar metabolomes were defined and were jointly composed of 197 analytes, 60 of which were identified. Integration of theses datasets support the coordination of merocrine-based and eccrine-based models of nectar synthesis. The nectary ultrastructure supports the merocrine-based model due to the abundance of rough endoplasmic reticulum positioned parallel to the cell walls and profusion of vesicles fusing to the plasma membranes. The eccrine-based model which consist of a progression from starch synthesis to starch degradation and to sucrose biosynthesis was supported by gene expression data. This demonstrates conservation of the eccrine-based model for the first time in both trichomatic and extrafloral nectaries. Lastly, nectary gene expression data provided evidence to support de novo synthesis of amino acids detected in the secreted nectars

    Metabolomic Profiling of Nicotiana Spp. Nectars Indicate That Pollinator Feeding Preference Is a Stronger Determinant Than Plant Phylogenetics in Shaping Nectar Diversity

    No full text
    Floral nectar is a rich secretion produced by the nectary gland and is offered as reward to attract pollinators leading to improved seed set. Nectars are composed of a complex mixture of sugars, amino acids, proteins, vitamins, lipids, organic and inorganic acids. This composition is influenced by several factors, including floral morphology, mechanism of nectar secretion, time of flowering, and visitation by pollinators. The objective of this study was to determine the contributions of flowering time, plant phylogeny, and pollinator selection on nectar composition in Nicotiana. The main classes of nectar metabolites (sugars and amino acids) were quantified using gas chromatography/mass spectrometric analytical platforms to identify differences among fifteen Nicotiana species representing day- and night-flowering plants from ten sections of the genus that are visited by five different primary pollinators. The nectar metabolomes of different Nicotiana species can predict the feeding preferences of the target pollinator(s) of each species, and the nectar sugars (i.e., glucose, fructose, and sucrose) are a distinguishing feature of Nicotiana species phylogeny. Moreover, comparative statistical analysis indicate that pollinators are a stronger determinant of nectar composition than plant phylogeny.This article is published as Silva, Fredy A., Elizabeth C. Chatt, Siti-Nabilla Mahalim, Adel Guirgis, Xingche Guo, Daniel S. Nettleton, Basil J. Nikolau, and Robert W. Thornburg. "Metabolomic Profiling of Nicotiana Spp. Nectars Indicate That Pollinator Feeding Preference Is a Stronger Determinant Than Plant Phylogenetics in Shaping Nectar Diversity." Metabolites 10 (2020): 214. doi: 10.3390/metabo10050214.</p

    Nectar biosynthesis is conserved among floral and extrafloral nectaries

    No full text
    Nectar is a primary reward mediating plant-animal mutualisms to improve plant fitness and reproductive success. Four distinct trichomatic nectaries develop in cotton (Gossypium hirsutum), one floral and three extrafloral, and the nectars they secrete serve different purposes. Floral nectar attracts bees for promoting pollination, while extrafloral nectar attracts predatory insects as a means of indirect protection from herbivores. Cotton therefore provides an ideal system for contrasting mechanisms of nectar production and nectar composition between different nectary types. Here, we report the transcriptome and ultrastructure of the four cotton nectary types throughout development and compare these with the metabolomes of secreted nectars. Integration of these datasets supports specialization among nectary types to fulfill their ecological niche, while conserving parallel coordination of the merocrine-based and eccrine-based models of nectar biosynthesis. Nectary ultrastructures indicate an abundance of rough endoplasmic reticulum positioned parallel to the cell walls and a profusion of vesicles fusing to the plasma membranes, supporting the merocrine model of nectar biosynthesis. The eccrine-based model of nectar biosynthesis is supported by global transcriptomics data, which indicate a progression from starch biosynthesis to starch degradation and sucrose biosynthesis and secretion. Moreover, our nectary global transcriptomics data provide evidence for novel metabolic processes supporting de novo biosynthesis of amino acids secreted in trace quantities in nectars. Collectively, these data demonstrate the conservation of nectar-producing models among trichomatic and extrafloral nectaries

    Nectar biosynthesis is conserved among floral and extrafloral nectaries

    No full text
    Nectar is a primary reward mediating plant–animal mutualisms to improve plant fitness and reproductive success. Four distinct trichomatic nectaries develop in cotton (Gossypium hirsutum), one floral and three extrafloral, and the nectars they secrete serve different purposes. Floral nectar attracts bees for promoting pollination, while extrafloral nectar attracts predatory insects as a means of indirect protection from herbivores. Cotton therefore provides an ideal system for contrasting mechanisms of nectar production and nectar composition between different nectary types. Here, we report the transcriptome and ultrastructure of the four cotton nectary types throughout development and compare these with the metabolomes of secreted nectars. Integration of these datasets supports specialization among nectary types to fulfill their ecological niche, while conserving parallel coordination of the merocrine-based and eccrine-based models of nectar biosynthesis. Nectary ultrastructures indicate an abundance of rough endoplasmic reticulum positioned parallel to the cell walls and a profusion of vesicles fusing to the plasma membranes, supporting the merocrine model of nectar biosynthesis. The eccrine-based model of nectar biosynthesis is supported by global transcriptomics data, which indicate a progression from starch biosynthesis to starch degradation and sucrose biosynthesis and secretion. Moreover, our nectary global transcriptomics data provide evidence for novel metabolic processes supporting de novo biosynthesis of amino acids secreted in trace quantities in nectars. Collectively, these data demonstrate the conservation of nectar-producing models among trichomatic and extrafloral nectaries.This article is published as Chatt, Elizabeth C., Siti-Nabilla Mahalim, Nur-Aziatull Mohd-Fadzil, Rahul Roy, Peter M. Klinkenberg, Harry T. Horner, Marshall Hampton, Clay J. Carter, and Basil J. Nikolau. "Nectar biosynthesis is conserved among floral and extrafloral nectaries." Plant Physiology 185, no. 4 (2021): 1595-1616. DOI: 10.1093/plphys/kiab018. Copyright 2021 The Author(s). Attribution 4.0 International (CC BY 4.0). Posted with permission

    Systems analyses of key metabolic modules of floral and extrafloral nectaries of cotton

    Get PDF
    Nectar is a primary reward mediating plant-animal mutualisms to improve plant fitness and reproductive success. In Gossypium hirsutum (cotton), four distinct trichomatic nectaries develop, one floral and three extrafloral. The secreted floral and extrafloral nectars serve different purposes, with the floral nectar attracting bees to promote pollination and the extrafloral nectar attracting predatory insects as a means of indirect resistance from herbivores. Cotton therefore provides an ideal system to contrast mechanisms of nectar production and nectar composition between floral and extrafloral nectaries. Here, we report the transcriptome, ultrastructure, and metabolite spatial distribution using mass spectrometric imaging of the four cotton nectary types throughout development. Additionally, the secreted nectar metabolomes were defined and were jointly composed of 197 analytes, 60 of which were identified. Integration of theses datasets support the coordination of merocrine-based and eccrine-based models of nectar synthesis. The nectary ultrastructure supports the merocrine-based model due to the abundance of rough endoplasmic reticulum positioned parallel to the cell walls and profusion of vesicles fusing to the plasma membranes. The eccrine-based model which consist of a progression from starch synthesis to starch degradation and to sucrose biosynthesis was supported by gene expression data. This demonstrates conservation of the eccrine-based model for the first time in both trichomatic and extrafloral nectaries. Lastly, nectary gene expression data provided evidence to support de novo synthesis of amino acids detected in the secreted nectars.This preprint of an article published as Chatt, EC, S-N Mahalim, N-A Mohd-Fadzil, Rl Roy, PM Klinkenberg, HTHorner, M Hampton, CJ Carter, BJ Nikolau. 2021. Systems analyses of key metabolic modules of floral and extrafloral nectaries of cotton (Gossypium hirsutum). Plant Physiology 185: 1595-1616 10.1101/857771. Posted with permission.</p
    corecore