3,797 research outputs found

    Dynamics of poroelastic filaments

    Full text link
    We investigate the stability and geometrically non-linear dynamics of slender rods made of a linear isotropic poroelastic material. Dimensional reduction leads to the evolution equation for the shape of the poroelastica where, in addition to the usual terms for the bending of an elastic rod, we find a term that arises from fluid-solid interaction. Using the poroelastica equation as a starting point, we consider the load controlled and displacement controlled planar buckling of a slender rod, as well as the closely related instabilities of a rod subject to twisting moments and compression when embedded in an elastic medium. This work has applications to the active and passive mechanics of thin filaments and sheets made from gels, plant organs such as stems, roots and leaves, sponges, cartilage layers and bones.Comment: 34 pages, 13 figures, to appear in the Proceeding of the Royal Societ

    Monami as an oscillatory hydrodynamic instability in a submerged sea grass bed

    Get PDF
    The onset of monami ~-- the synchronous waving of sea grass beds driven by a steady flow -- is modeled as a linear instability of the flow. Unlike previous works, our model considers the drag exerted by the grass in establishing the steady flow profile, and in damping out perturbations to it. We find two distinct modes of instability, which we label Mode 1 and Mode 2. Mode 1 is closely related to Kelvin-Helmholtz instability modified by vegetation drag, whereas Mode 2 is unrelated to Kelvin-Helmholtz and arises from an interaction between the flow in the vegetated and unvegetated layers. The vegetation damping, according to our model, leads to a finite threshold flow for both these modes. Experimental observations for the onset and frequency of waving compare well with model predictions for the instability onset criteria and the imaginary part of the complex growth rate respectively, but experiments lie in a parameter regime where the two modes can not be distinguished. % The inclusion of vegetation drag differentiates our mechanism from the previous linear stability analyses of monami.Comment: 4 figures, 13 page

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics

    Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors

    Full text link
    While isovalent doping of GaAs (e.g. by In) leads to a repulsion between the solute atoms, two Cr, Mn, or Fe atoms in GaAs are found to have lower energy than the well-separated pair, and hence attract each other. The strong bonding interaction between levels with t2 symmetry on the transition metal (TM) atoms results in these atoms exhibiting a strong tendency to cluster. Using first-principles calculations, we show that this attraction is maximal for Cr, Mn and Fe while it is minimal for V. The difference is attributed to the symmetry of the highest occupied levels. While the intention is to find possible choices of spintronic materials that show a reduced tendency to cluster, one finds that the conditions that minimize clustering tendencies also minimize the stabilization of the magnetic state.Comment: To appear in Appl. Phys. Let

    Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Omand, M. M., Govindarajan, R., He, J., & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Scientific Reports, 10(1), (2020): 5582, doi:10.1038/s41598-020-60424-5.The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.We thank NSF (OCE 1260080), NASA (NNX16AR48G), and the Ministry of Earth Sciences, Government of India (Monsoon Mission Project on the Bay of Bengal) for support. This work was largely done in 2012 while MMO was a postdoctoral associate at WHOI, during a visit by RG supported by The Mary Sears visiting scholar program to the Woods Hole Oceanographic Institution. Thanks also to Benjamin Hodges for many thoughtful contributions

    Transitions to Nematic states in homogeneous suspensions of high aspect ratio magnetic rods

    Full text link
    Isotropic-Nematic and Nematic-Nematic transitions from a homogeneous base state of a suspension of high aspect ratio, rod-like magnetic particles are studied for both Maier-Saupe and the Onsager excluded volume potentials. A combination of classical linear stability and asymptotic analyses provides insight into possible nematic states emanating from both the isotropic and nematic non-polarized equilibrium states. Local analytical results close to critical points in conjunction with global numerical results (Bhandar, 2002) yields a unified picture of the bifurcation diagram and provides a convenient base state to study effects of external orienting fields.Comment: 3 Figure

    Engendering familial citizens: Serial-viewing among middle-class women in urban India

    Get PDF
    This thesis is a study of serial viewing among women in middle-families in two Indian cities carried out in 2007. It explores women’s engagement with a new brand of serial narratives that centralizes the traditional Hindu joint family and places women at the centre of the family as nurturer and custodian of traditional values. This return to the traditional, the thesis proposes, marks a new conjunctural moment in the evolution of Indian television. This new conjunctural moment, characterized by competitive attempts among private and transnational cable and satellite television to Indianize content, the unprecedented growth of vernacular television and consequently the national circulation of traditionally inflected serials, has come to represent the feminisation of television in India. The manner in which differentially located women engage with these narratives of idealized family and womanhood suggests certain specific gendered ways in which television mediates women’s discursive access to and performance within both family and civic space. This thesis argues that the feminisation of television in India helps extend the ideal of a familial womanhood on to the civic space, limiting women’s access to alternative, oppositional forms of civic belonging and citizenship
    • …
    corecore