20 research outputs found

    Atherogenic Lipid Stress Induces Platelet Hyperactivity Through CD36-Mediated Hyposensitivity To Prostacyclin-; The Role Of Phosphodiesterase 3A

    Get PDF
    Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signalling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidised low density lipoproteins (oxLDL) associated with dyslipidaemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signalling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a PDE-insensitive cAMP analogue, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of phosphodiesterase 3A (PDE3A), leading to diminished cAMP signalling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signalling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidised phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild type mice strongly promoted FeCl3 induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidaemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signalling. In contrast, platelet sensitivity to a PDE-resistant cAMP analogue remained normal. Genetic deletion of CD36, protected dyslipidaemic animals from PGI2 hyposensitivity and restored PKA signalling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signalling.  

    Acute hypertriglyceridemia induces platelet hyperactivity that is not attenuated by insulin in polycystic ovary syndrome.

    Get PDF
    Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI2) were measured by flow cytometric analysis of platelet fibrinogen binding and P-selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg(-1) min(-1), P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg(-1) min(-1), P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI2 diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid-induced platelet hyperactivity by decreasing their response to 1 μmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 μmol/L PGI2 (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero-thrombotic risk. www.isrctn.org. Unique Identifier: ISRCTN42448814

    Laboratory Evaluation of the VISITECT® Advanced Disease Semi-quantitative Point-of-care CD4 Test.

    Get PDF
    BACKGROUND: Advanced HIV disease (AHD; CD4 counts <200 cells/µL) remains common in many low- and middle-income settings. An instrument-free point-of-care test to rapidly identify patients with AHD would facilitate implementation of the World Health Organization (WHO) recommended package of care. We performed a laboratory-based validation study to evaluate the performance of the VISITECT® CD4 Advanced Disease assay in Botswana. SETTING: A laboratory validation study. METHODS: Venous blood samples from people living with HIV having baseline CD4 testing in Gaborone, Botswana, underwent routine testing using flow cytometry, followed by testing with the VISITECT® CD4 Advanced Disease assay by a laboratory scientist blinded to the flow cytometry result with a visual read to determine if the CD4 count was below 200 cells/µL. A second independent investigator conducted a visual read blinded to the results of both flow cytometry and the initial visual read. The sensitivity and specificity of the VISITECT® for detection of AHD were determined using flow cytometry as a reference standard, and inter-rater agreement in VISITECT® visual reads assessed. RESULTS: 1053 samples were included in the analysis. The VISITECT test correctly identified 112/119 samples as having a CD4 count <200 cells/µL, giving a sensitivity of 94.1% (95% confidence interval [CI] 88.3-97.6%) and specificity of 85.9% (95% CI 83.5-88.0%) compared to flow cytometry. Inter-rater agreement between the two independent readers was 97.5%, Kappa 0.92 (p<0.001). CONCLUSIONS: The VISITECT® CD4 Advanced Disease reliably identified individuals with low CD4 counts and could facilitate implementation of the WHO recommended package of interventions for AHD

    Reversal of stress fibre formation by Nitric Oxide mediated RhoA inhibition leads to reduction in the height of preformed thrombi

    Get PDF
    Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation and inhibition. We hypothesised that Nitric oxide (NO), a platelet inhibitor, can modulate the actin cytoskeleton reversing platelet spreading, and therefore reduce the capability of thrombi to withstand a high shear environment. Our data demonstrates that GSNO, DEANONOate, and a PKG-activating cGMP analogue reversed stress fibre formation and increased actin nodule formation in adherent platelets. This effect is sGC dependent and independent of ADP and thromboxanes. Stress fibre formation is a RhoA dependent process and NO induced RhoA inhibition, however, it did not phosphorylate RhoA at ser188 in spread platelets. Interestingly NO and PGI2 synergise to reverse stress fibre formation at physiologically relevant concentrations. Analysis of high shear conditions indicated that platelets activated on fibrinogen, induced stress fibre formation, which was reversed by GSNO treatment. Furthermore, preformed thrombi on collagen post perfused with GSNO had a 30% reduction in thrombus height in comparison to the control. This study demonstrates that NO can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling excessive thrombosis

    cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway

    Full text link
    Cyclic adenosine monophosphate (cAMP)-dependent signaling modulates platelet shape change through unknown mechanisms. We examined the effects of cAMP signaling on platelet contractile machinery. Prostaglandin E1 (PGE1)-mediated inhibition of thrombinstimulated shape change was accompanied by diminished phosphorylation of myosin light chain (MLC). Since thrombin stimulates phospho-MLC through RhoA/Rhoassociated, coiled-coil containing protein kinase (ROCK)-dependent inhibition of MLC phosphatase (MLCP), we examined the effects of cAMP on this pathway. Thrombin stimulated the membrane localization of RhoA and the formation of a signaling complex of RhoA/ROCK2/myosin phosphatase-targeting subunit 1 (MYPT1). This resulted in ROCK-mediated phosphorylation of MYPT1 on threonine 853 (thr853), the disassociation of the catalytic subunit protein phosphatase 1δ (PP1d) from MYPT1 and inhibition of basal MLCP activity. Treatment of platelets with PGE1 prevented thrombin-induced phospho-MYPT1-thr853 in a protein kinase A (PKA)-dependent manner. Examination of the molecular mechanisms revealed that PGE1 induced the phosphorylation of RhoA on serine188 through a pathway requiring cAMP and PKA. This event inhibited the membrane relocalization of RhoA, prevented the association of RhoA with ROCK2 and MYPT1, attenuated the dissociation of PP1δ from MYPT1, and thereby restored basal MLCP activity leading to a decrease in phospho-MLC. These data reveal a new mechanism by which the cAMP-PKA signaling pathway regulates platelet function

    Acute Hypertriglyceridemia Induces Platelet Hyperactivity That is Not Attenuated by Insulin in Polycystic Ovary Syndrome

    Full text link
    BACKGROUND: Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. METHODS AND RESULTS: Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI(2)) were measured by flow cytometric analysis of platelet fibrinogen binding and P‐selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg(−1) min(−1), P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg(−1) min(−1), P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI(2) diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid‐induced platelet hyperactivity by decreasing their response to 1 μmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 μmol/L PGI(2) (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. CONCLUSION: Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero‐thrombotic risk. CLINICAL TRIAL REGISTRATION: URL: www.isrctn.org. Unique Identifier: ISRCTN42448814

    Oxidized LDL activates blood platelets through CD36/NOX2–mediated inhibition of the cGMP/protein kinase G signaling cascade

    Full text link
    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL- mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD362/2 murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX22/2 mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 39,59-cyclic monophosphate (cGMP)- mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling
    corecore