166 research outputs found
The microwave spectrum of solar millisecond spikes
The microwave radiation from solar flares sometimes shows short and intensive spikes which are superimposed on the burst continuum. In order to determine the upper frequency limit of their occurrence and the circular polarization, a statistical analysis was performed on digital microwave observations from 3.2 to 92.5 GHz. Additionally, fine structures were investigated with a fast 32-channel spectrometer at 3.47 GHz. It was found that about 10 percent of the bursts show fine structures at 3.2 and 5.2 GHz, whereas none occurred above 8.4 GHz. Most of the observed spikes were very short and their bandwidth varied from below 0.5 MHz to more than 200 MHz. Simultaneous observations at two further frequencies showed no coincident spikes at the second and third harmonic. The observations can be explained by the theory of electron cyclotron masering if the observed bandwidths are determined by magnetic field inhomogeneities or if the rise times are independent of the source diameters. The latter would imply source sizes between 50 and 100 km
A study of starting time in great hard X-ray flares
An analysis of the starting time in ten great hard X-ray bursts observed with the X-Ray Burst Spectrometer (HXRBS) is presented. It is shown that the impulsive phase of nine of them is composed of a preflash phase, during which the burst is observed up to an energy limit ranging from some tens of keV to 200 keV, followed ten to some tens of seconds afterwards by a flash phase, where the count rate rises simultaneously in all detector channels. For two events strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase
Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions
This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again
Energetics and dynamics of simple impulsive solar flares
Flare energetics and dynamics were studied using observations of simple impulsive spike bursts. A large, homogeneous set of events was selected to enable the most definite tests possible of competing flare models, in the absence of spatially resolved observations. The emission mechanisms and specific flare models that were considered in this investigation are described, and the derivations of the parameters that were tested are presented. Results of the correlation analysis between soft and hard X-ray energetics are also presented. The ion conduction front model and tests of that model with the well-observed spike bursts are described. Finally, conclusions drawn from this investigation and suggestions for future studies are discussed
ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce SAPK activation and apoptosis in HaCaT cells
Doxorubicin is an anthracycline drug that is one of the most effective and widely used anticancer agents for the treatment of both hematologic and solid tumors. The stress-activated protein kinases (SAPKs) are frequently activated by a number of cancer chemotherapeutics. When phosphorylated, the SAPKs initiate a cascade that leads to the production of proinflammatory cytokines. Some inhibitors of protein synthesis, known as ribotoxic stressors, coordinately activate SAPKs and lead to apoptotic cell death. We demonstrate that doxorubicin effectively inhibits protein synthesis, activates SAPKs, and causes apoptosis. Ribotoxic stressors share a common mechanism in that they require ZAK, an upstream MAP3K, to activate the pro-apoptotic and proinflammatory signaling pathways that lie downstream of SAPKs. By employing siRNA mediated knockdown of ZAK or administration of sorafenib and nilotinib, kinase inhibitors that have a high affinity for ZAK, we provide evidence that ZAK is required for doxorubicin-induced proinflammatory and apoptotic responses in HaCaT cells, a pseudo-normal keratinocyte cell line, but not in HeLa cells, a cancerous cell line. ZAK has two different isoforms, ZAK-α (91 kDa) and ZAK-β (51 kDa). HaCaT or HeLa cells treated with doxorubicin and immunoblotted for ZAK displayed a progressive decrease in the ZAK-α band and the appearance of ZAK-β bands of larger size. Abrogation of these changes after exposure of cells to sorafenib and nilotinib suggests that these alterations occur following stimulation of ZAK. We suggest that ZAK inhibitors such as sorafenib or nilotinib may be effective when combined with doxorubicin to treat cancer patients
1989 as a mimetic revolution: Russia and the challenge of post-communism
Various terms have been used to describe the momentous events of 1989, including Jürgen Habermas’s ‘rectifying revolution,’ and my own notion of 1989 as a type of ‘anti-revolution’: repudiating not only what had come before, but also denying the political logic of communist power, as well as the emancipatory potential of revolutionary socialism in its entirety. In the event, while the negative agenda of 1989 has been fulfilled, it failed in the end to transcend the political logic of the systems that collapsed at that time. This paper explores the unfulfilled potential of 1989. Finally, 1989 became more of a counter- rather than an anti-revolution, replicating in an inverted form the practices of the mature state socialist regimes. The paucity of institutional and intellectual innovation arising from 1989 is striking. The dominant motif was ‘returnism,’ the attempt to join an established enterprise rather than transforming it. Thus, 1989 can be seen as mimetic revolution, in the sense that it emulated systems that were not organically developed in the societies in which they were implanted. For Eastern Europe ‘returning’ to Europe appeared natural, but for Russia the civilizational challenge of post-communism was of an entirely different order. There could be no return, and instead of a linear transition outlined by the classic transitological literature, Russia’s post-communism demonstrated that the history of others could not be mechanically transplanted from one society to another
A Concerted Kinase Interplay Identifies PPARγ as a Molecular Target of Ghrelin Signaling in Macrophages
The peroxisome proliferator-activator receptor PPARγ plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARγ. Although the interplay between CD36 and PPARγ in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARγ remains unknown. Here, we demonstrate that ghrelin triggers PPARγ activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRα and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARγ phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARγ Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARγ activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARγ response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Gαq-dependent manner, resulting in Akt recruitment to PPARγ, enhanced PPARγ phosphorylation and activation independently of Ser-84, and increased expression of LXRα and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Gαq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARγ to ghrelin in macrophages
Suppression of Ribosomal Function Triggers Innate Immune Signaling through Activation of the NLRP3 Inflammasome
Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses activation of the NLRP inflammasome. For agents that inhibit translation through mechanisms that do not involve loss of potassium, high extracellular potassium suppresses IL-1ß processing through a mechanism that remains undefined
Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish
<div><h3>Background</h3><p>Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the <em>Akt1</em> gene.</p> <h3>Methodology/Principal Findings</h3><p><em>Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1</em>)<sup>cy18</sup> displays severely obese phenotypes at the adult stage. In Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup> caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues.</p> <h3>Conclusion/Significance</h3><p>Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.</p> </div
- …