5 research outputs found

    Cosmic Ray Extremely Distributed Observatory: a global network of detectors to probe contemporary physics mysteries

    Full text link
    In the past few years, cosmic-rays beyond the GZK cut-off (E>5×1019E > 5 \times 10^{19} eV) have been detected by leading collaborations such as Pierre Auger Observatory. Such observations raise many questions as to how such energies can be reached and what source can possibly produce them. Although at lower energies, mechanisms such as Fermi acceleration in supernovae front shocks seem to be favored, top-down scenarios have been proposed to explain the existence of ultra-high energy cosmic-rays: the decay of super-massive long-lived particles produced in the early Universe may yield to a flux of ultra-high energy photons. Such photons might be presently generating so called super-preshowers, an extended cosmic-ray shower with a spatial distribution that can be as wide as the Earth diameter. The Cosmic Ray Extremely Distributed Observatory (CREDO) mission is to find such events by means of a network of detectors spread around the globe. CREDO's strategy is to connect existing detectors and create a worldwide network of cosmic-ray observatories. Moreover, citizen-science constitutes an important pillar of our approach. By helping our algorithms to recognize detection patterns and by using smartphones as individual cosmic-ray detectors, non-scientists can participate in scientific discoveries and help unravel some of the deepest mysteries in physics.Comment: excited QCD Conference, CREDO Collaboration, 7 pages, 3 figure

    Cosmic-Ray Extremely Distributed Observatory

    No full text
    The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic-ray ensembles (CRE): groups of at least two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g., as products of photon–photon interactions), and exotic scenarios (e.g., as results of decay of Super-Heavy Dark Matter particles). Their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic-ray energy spectrum, with a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. As the CRE are predominantly expected to be spread over large areas and, due to the expected wide energy range of the contributing particles, such a CRE detection might only be feasible when using all available cosmic-ray infrastructure collectively, i.e., as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE and, in particular, to pool together cosmic-ray data to support specific CRE detection strategies
    corecore