6 research outputs found

    Life Cycle Assessment of the Cultivation Processes for the Main Vegetable Crops in Southern Egypt

    No full text
    Due to the increasing concern about climate change and environmental sustainability, the investigation of energy consumption represents a very intriguing and undeniable subject. This study was directed to investigate energy footprints, greenhouse gas (GHG) emissions and life cycle assessment (LCA) of the main vegetable crops cultivated under open field conditions in southern Egypt. Potato production required the maximum energy amount (112.3 GJ/ha) compared to 76 GJ and 96 GJ for onion and tomato, respectively. Based on energy indices, potato gave (energy ratio > 1; energy productivity > 1; energy profitability > 1; net energy > 0), while onion and tomato production shared the same indicators (energy ratio 1; energy profitability 2 eq. The same GHG amount was produced by 834 kg of onion bulbs and 940.6 kg of tomato fruits. The emission rates were more a consequence of diesel, followed by inorganic fertilizer and manure. In addition to carbon emissions, every production process causes several other environmental problems, thus a comprehensive analysis of environmental impact categories is required. The openLCA program performed LCA and ten impact categories were considered to transform the inventory data into several indicators. Producing one ton of potato tubers has the least footprint on the environment and the ecosystem, such as global warming (GW)—238.8 kg CO2 eq. t−1; human toxicity (HT)—288.3 kg 1,4-DB eq. t−1; fresh water aquatic ecotoxicity (FAEF)—160.44 kg 1,4-DB eq. t−1; marine aquatic ecotoxicity (MAET)—365,636 kg 1,4-DB eq. t−1; and terrestrial ecotoxicity (TE)—1.18 kg 1,4-DB eq. t−1. The analyses indicated that machinery and diesel fuel had the highest impact on all the studied categories

    Ameliorating Seed Germination and Seedling Growth of Nano-Primed Wheat and Flax Seeds Using Seven Biogenic Metal-Based Nanoparticles

    No full text
    Recently, large-scale agriculture has led to increasing crop production. To increase crop productivity in large-scale cropping systems, attempts have been made to make nano-fertilizers and deliver them to the crops by extension of nanotechnology. Hence, nano-fertilizers might be defined as nanoparticles that may directly assist in supplying essential nutrients for crop productivity. Seed germination is the first and the most susceptible stage in the plant’s growing phases, so could be considered as an index to evaluate the effect of newly developed materials such as nanoparticles (NPs), providing useful information for researchers. In our experiments, germination tests have been carried out in Petri dishes containing wet filter paper and nano-primed seeds. We had biosynthesized seven nanoparticles in our previous studies including calcinated and non-calcinated zinc oxide, zinc, magnesium oxide, silver, copper, and iron nanoparticles. The effect of these biogenic nanoparticles and their counterpart metallic salts including zinc acetate, magnesium sulfate, silver nitrate, copper sulfate, and iron (III) chloride was studied on two popularly grown plants, wheat and flax, in laboratory conditions to obtain preliminary information for future field experiments. Germination percentage, shoot length, root length, seedlings length, root–shoot ratio, seedling vigor index (SVI), shoot length stress tolerance index (SLSI), and root length stress tolerance index (RLSI) were calculated on the second and seventh days of the experiment. According to the results, the response of the plants to metal containing nanoparticles and metal salts mainly depend on the type of the metal, plant species, concentration of the NP suspension or salt solution, condition of the exposure, and the stage of growth

    Ameliorating Seed Germination and Seedling Growth of Nano-Primed Wheat and Flax Seeds Using Seven Biogenic Metal-Based Nanoparticles

    No full text
    Recently, large-scale agriculture has led to increasing crop production. To increase crop productivity in large-scale cropping systems, attempts have been made to make nano-fertilizers and deliver them to the crops by extension of nanotechnology. Hence, nano-fertilizers might be defined as nanoparticles that may directly assist in supplying essential nutrients for crop productivity. Seed germination is the first and the most susceptible stage in the plant’s growing phases, so could be considered as an index to evaluate the effect of newly developed materials such as nanoparticles (NPs), providing useful information for researchers. In our experiments, germination tests have been carried out in Petri dishes containing wet filter paper and nano-primed seeds. We had biosynthesized seven nanoparticles in our previous studies including calcinated and non-calcinated zinc oxide, zinc, magnesium oxide, silver, copper, and iron nanoparticles. The effect of these biogenic nanoparticles and their counterpart metallic salts including zinc acetate, magnesium sulfate, silver nitrate, copper sulfate, and iron (III) chloride was studied on two popularly grown plants, wheat and flax, in laboratory conditions to obtain preliminary information for future field experiments. Germination percentage, shoot length, root length, seedlings length, root–shoot ratio, seedling vigor index (SVI), shoot length stress tolerance index (SLSI), and root length stress tolerance index (RLSI) were calculated on the second and seventh days of the experiment. According to the results, the response of the plants to metal containing nanoparticles and metal salts mainly depend on the type of the metal, plant species, concentration of the NP suspension or salt solution, condition of the exposure, and the stage of growth

    Improving Crop Productivity and Ensuring Food Security through the Adoption of Genetically Modified Crops in Sub-Saharan Africa

    No full text
    The food security challenge is one of the most topical issues of the 21st Century. Sub-Saharan Africa (SSA) is the least food-secure region, and solutions are constantly being sought to alleviate the problem. The region’s exponentially growing population is in dire need of affordable and nutritious food. The “Gene Revolution” (genetic engineering) presents opportunities in which food security can be ensured in SSA. Genetic modification (GM) has potential to solve myriad problems currently being experienced in SSA agriculture, hence improving yields and reducing the costs of production. Most of the SSA countries have a precautionary stance towards GM crops; thus, only a handful of countries have approved the commercialized production of transgenic crops. The lack of understanding and sound knowledge about the GM system is reflected in the formulation of policies and regulatory frameworks for biosafety and their implementation. There is need to conscientize the policymakers and the public about the general principles of genetic engineering for better decision making. Considering the multiple beneficial aspects demonstrated by transgenic crops it will not be prudent to ignore them. The versatility of GM technology makes it adaptable to the food crisis in SSA

    Improving Crop Productivity and Ensuring Food Security through the Adoption of Genetically Modified Crops in Sub-Saharan Africa

    No full text
    The food security challenge is one of the most topical issues of the 21st Century. Sub-Saharan Africa (SSA) is the least food-secure region, and solutions are constantly being sought to alleviate the problem. The region’s exponentially growing population is in dire need of affordable and nutritious food. The “Gene Revolution” (genetic engineering) presents opportunities in which food security can be ensured in SSA. Genetic modification (GM) has potential to solve myriad problems currently being experienced in SSA agriculture, hence improving yields and reducing the costs of production. Most of the SSA countries have a precautionary stance towards GM crops; thus, only a handful of countries have approved the commercialized production of transgenic crops. The lack of understanding and sound knowledge about the GM system is reflected in the formulation of policies and regulatory frameworks for biosafety and their implementation. There is need to conscientize the policymakers and the public about the general principles of genetic engineering for better decision making. Considering the multiple beneficial aspects demonstrated by transgenic crops it will not be prudent to ignore them. The versatility of GM technology makes it adaptable to the food crisis in SSA

    Investigating the Potential of Streptomyces spp. in Suppression of Rhizoctonia solani (AG1-IA) Causing Rice Sheath Blight Disease in Northern Iran

    No full text
    A study was conducted in the Guilan Province of Iran, using a variety of Actinomycetes species isolated from the rice fields, with the intention of identifying useful biocontrol agents to lessen rice sheath blight disease. The antagonistic effects against the rice pathogen agent were also assessed both in vitro and in vivo. The antifungal abilities of more than 30 Actinomycetes isolates against the Rhizoctonia solani Kühn (AG1-IA) were used. The biocontrol abilities of the most active isolates were studied in a greenhouse. The size of the inhibition zone against pathogen development and the most potent antagonist Actinomycetes isolates were determined based on the dual culture screening test findings. The ability to create hydrolytic enzymes including amylase, chitinase, protease, and lipase were shown by hydrolytic enzyme assays on the putative antagonists. Antifungal activities of Streptomyces isolates against fungus mycelia were also studied using SEM since, compared to the control grown mycelia and mycelia adjacent to the inhibition zone in the plate, tests revealed an unusual and deformed structure; in our opinion, the chitinase secreted can destroy fungal mycelium. Chloroform test showed that its antifungal effect persists upon exposure to chloroform. All possible isolates belonged to the Streptomyces species, according to the 16S rDNA molecular analysis of the majority of active isolates. Comparing isolates, G had the highest impact in reducing sheath blight disease. The Iranian strain of the Streptomyces has antifungal capabilities, highlighting its potential as a viable biocontrol agent to be used in an Integrated Disease Management (IDM) program to control the rice sheath blight disease
    corecore