1,071 research outputs found
Spin Resistivity in Frustrated Antiferromagnets
In this paper we study the spin transport in frustrated antiferromagnetic FCC
films by Monte Carlo simulation. In the case of Ising spin model, we show that
the spin resistivity versus temperature exhibits a discontinuity at the phase
transition temperature: an upward jump or a downward fall, depending on how
many parallel and antiparallel localized spins interacting with a given
itinerant spin. The surface effects as well as the difference of two degenerate
states on the resistivity are analyzed. Comparison with non frustrated
antiferromagnets is shown to highlight the frustration effect. We also show and
discuss the results of the Heisenberg spin model on the same lattice
Spin Resistivity in the Frustrated Model
We study in this paper the resistivity encountered by Ising itinerant spins
traveling in the so-called frustrated simple cubic Ising lattice. For
the lattice, we take into account the interactions between nearest-neighbors
and next-nearest-neighbors, and respectively. Itinerant spins
interact with lattice spins via a distance-dependent interaction. We also take
into account an interaction between itinerant spins. The lattice is frustrated
in a range of in which we show that it undergoes a very strong
first-order transition. Using Monte Carlo simulation, we calculate the
resistivity of the itinerant spins and show that the first-order
transition of the lattice causes a discontinuity of .Comment: submitted for publicatio
Derivation of the Matalon-Packter law for Liesegang patterns
Theoretical models of the Liesegang phenomena are studied and simple
expressions for the spacing coefficients characterizing the patterns are
derived. The emphasis is on displaying the explicit dependences on the
concentrations of the inner- and the outer-electrolytes. Competing theories
(ion-product supersaturation, nucleation and droplet growth, induced sol-
coagulation) are treated with the aim of finding the distinguishing features of
the theories. The predictions are compared with experiments and the results
suggest that the induced sol-coagulation theory is the best candidate for
describing the experimental observations embodied in the Matalon-Packter law.Comment: 9 pages, 7 figures, RevTe
Formation of Liesegang patterns: Simulations using a kinetic Ising model
A kinetic Ising model description of Liesegang phenomena is studied using
Monte Carlo simulations. The model takes into account thermal fluctuations,
contains noise in the chemical reactions, and its control parameters are
experimentally accessible. We find that noisy, irregular precipitation takes
place in dimension d=2 while, depending on the values of the control
parameters, either irregular patterns or precipitation bands satisfying the
regular spacing law emerge in d=3.Comment: 7 pages, 8 ps figures, RevTe
Formation of Liesegang patterns: A spinodal decomposition scenario
Spinodal decomposition in the presence of a moving particle source is
proposed as a mechanism for the formation of Liesegang bands. This mechanism
yields a sequence of band positions x_n that obeys the spacing law
x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial
concentration of the reagents is determined and we find that the functional
form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure
Asymptotic expansion for reversible A + B <-> C reaction-diffusion process
We study long-time properties of reversible reaction-diffusion systems of
type A + B C by means of perturbation expansion in powers of 1/t (inverse
of time). For the case of equal diffusion coefficients we present exact
formulas for the asymptotic forms of reactant concentrations and a complete,
recursive expression for an arbitrary term of the expansions. Taking an
appropriate limit we show that by studying reversible reactions one can obtain
"singular" solutions typical of irreversible reactions.Comment: 6 pages, no figures, to appear in PR
First-principles study of interstitial diffusion of oxygen in nickel chromium binary alloy
The first-principles calculations of the diffusion processes of oxygen in pure Ni and Ni-Cr binary alloy are conducted to understand the oxidation behavior of nickel base alloys. The cohesive energy, insertion energy of atomic oxygen, and vacancy formation energy in nickel are calculated and compared with experimental data. The activation energies of oxygen are also calculated. The results show agreement with previous work for the oxygen diffusion in pure nickel. However, the calculated activation energy for the diffusion of oxygen in Ni-Cr binary alloy showed lower values than that in nickel because of the limitations of the current calculation model.open3
Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall
The A+B --> C reaction-diffusion process is studied in a system where the
reagents are separated by a semipermeable wall. We use reaction-diffusion
equations to describe the process and to derive a scaling description for the
long-time behavior of the reaction front. Furthermore, we show that a critical
localization-delocalization transition takes place as a control parameter which
depends on the initial densities and on the diffusion constants is varied. The
transition is between a reaction front of finite width that is localized at the
wall and a front which is detached and moves away from the wall. At the
critical point, the reaction front remains at the wall but its width diverges
with time [as t^(1/6) in mean-field approximation].Comment: 7 pages, PS fil
Supergravity based inflation models: a review
In this review, we discuss inflation models based on supergravity. After
explaining the difficulties in realizing inflation in the context of
supergravity, we show how to evade such difficulties. Depending on types of
inflation, we give concrete examples, particularly paying attention to chaotic
inflation because the ongoing experiments like Planck might detect the tensor
perturbations in near future. We also discuss inflation models in Jordan frame
supergravity, motivated by Higgs inflation.Comment: 30 pages, invited review for Classical and Quantum Gravity, published
versio
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
- …
