29 research outputs found

    Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

    Get PDF
    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter laboratory variations are discussed using a Cs,FA,MA Pb I,Br 3 halide perovskite thin film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance free JV curve with a potential power conversion efficiency of 24.6 . For grainsizes above amp; 8776;20 nm, intra grain charge transport is characterized by terahertz sum mobilities of amp; 8776;32 cm2 V amp; 8722;1 s amp; 8722;1. Drift diffusion simulations indicate that these intra grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presente

    Pregnancy induced hypertension: a role for peroxidation in microvillus plasma membranes.

    No full text
    Abstract It has been recently hypothesized that in PIH a placental oxidant- antioxidant imbalance might cause the release of lipoperoxidation products into the circulation, with subsequent damage of endothelial cell membranes. In this hypothesis the endothelial cell and further increase in circulating lipoperoxide levels, which are by themselves able to induce smooth muscle constriction and increased pressor responsiveness to angiotensin II. In order to investigate this issue, we studied the basal content of lipid peroxides in terms of malondialdehyde (MDA) in the syncytiotrophoblast plasma membranes (SPM) from PIH women. Moreover, we investigated the susceptibility to peroxidation of SPM using an in vitro oxidative stress as a tool to verify the predisposition to the in vivo development of peroxidation products. The fatty acid composition of the membranes was also analyzed. Microvillus membrane lipoperoxide concentrations were significantly increased in PIH women (62.8 ± 7.6 ng MDA/mg prot) compared with healthy pregnant subjects (37.6 ± 4.8 ng MDA/mg prot; p < 0.01). The formation of TBARS under the action of phenylhydrazine was significantly greater in PIH women (90.3 ± 7.4 mmol MDA/mol cholesterol) than in normal pregnant subjects (68.6 ± 6.4 mmol MDA/mol cholesterol; p < 0.01). In PIH microvillus membrane we also observed a significant increase of the content of polyunsaturated arachidonic acid. The increased susceptibility to oxidative stress of SPMs from PIH women might be due either to reduced antioxidant systems or to an abnormality of the lipid composition of the membrane. The present work also demonstrated in PIH a reduction in the SPM content of saturated fatty acids with an increase in polyunsaturated fatty acids, which are the major substrate for peroxidation. On the other hand, the higher lipoperoxidation may be due to the observed increased susceptibility to peroxidative stress, to a primary reduction in placental perfusion with tissue hypoxia or to both factors, which can potentiate each other
    corecore