38 research outputs found

    Enhancing scientific dissemination in neuroscience via preprint peer-review: "Peer Community In Circuit Neuroscience"

    Get PDF
    The dissemination of scientific results and new technologies in biomedical science is rapidly evolving from an exclusive and fee-oriented publishing system towards more open, free and independent strategies for sharing knowledge. In this context, preprint servers such as bioRxiv answer a very real scientific need by enabling the rapid, free and easy dissemination of findings, regardless of whether these are novel, replicated, or even showcasing negative results. Currently, thousands of manuscripts are being shared via bioRxiv each month, and neuroscience is the largest and fastest growing subject category. However, commenting on bioRxiv is declining and no structured scientific validation such as peer-review is currently available. The Peer Community In (PCI) platform addresses this unmet need by facilitating the rigorous evaluation and validation of preprints, and PCI Circuit Neuroscience (PCI C Neuro) aims to develop and extend this tool for the neuroscience community. Here we discuss PCI C Neuro's mission, how it works, and why it is an essential initiative in this new era of open science

    Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway

    Get PDF
    Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse stratum lacunosum-moleculare exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex, but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of entorhinal cortex afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in stratum lacunosum-moleculare interneurons thus alters the excitation-inhibition balance at entorhinal cortex inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. Abstract figure legend Hebbian LTP of excitatory transmission onto interneurons located within hippocampal stratum lacunosum moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre-and post-synaptic activity. Using Ndnf-Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibers reveals LTP at EC inputs only. Using an optogenetic theta-burst stimulation (OptoTBS) protocol to stimulate EC fibers in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC-CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway

    Astrocytic GABA transporter activity modulates excitatory neurotransmission

    Get PDF
    Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus

    Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network

    Get PDF
    Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks

    Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes

    Full text link
    peer reviewedThe thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented

    On-demand cell-autonomous gene therapy for brain circuit disorders

    Get PDF
    Several neurodevelopmental and neuropsychiatric disorders are characterized by intermittent episodes of pathological activity. Although genetic therapies offer the ability to modulate neuronal excitability, a limiting factor is that they do not discriminate between neurons involved in circuit pathologies and “healthy” surrounding or intermingled neurons. We describe a gene therapy strategy that down-regulates the excitability of overactive neurons in closed loop, which we tested in models of epilepsy. We used an immediate early gene promoter to drive the expression of Kv1.1 potassium channels specifically in hyperactive neurons, and only for as long as they exhibit abnormal activity. Neuronal excitability was reduced by seizure-related activity, leading to a persistent antiepileptic effect without interfering with normal behaviors. Activity-dependent gene therapy is a promising on-demand cell-autonomous treatment for brain circuit disorders

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa.

    Get PDF
    The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection

    Retraction.

    Get PDF
    This is a retraction of 'Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa' 10.1126/science.add873
    corecore