31 research outputs found

    Effects of sustained stimulation on the excitability of motoneurons innervating paralyzed and control muscles

    No full text
    The excitability of thenar motoneurons (reflected by F-wave persistence and amplitude) and thenar muscle force were measured during a stimulation protocol (90 s of 18-Hz supramaximal electrical stimulation of the median nerve) designed to induce muscle fatigue (force decline). Data from muscles ( n = 15) paralyzed by chronic cervical spinal cord injury were compared with those obtained from control muscles ( n = 6). The persistence of F waves in both paralyzed and control muscles increased from ∼60 to ∼76% during the first 10 s of the fatigue protocol. Persistence then declined progressively to ∼33% at 90 s. These changes in F-wave persistence suggest that similar reductions occur in the excitability of the motoneurons to paralyzed and control motor units after sustained antidromic activation. Despite this, significantly larger force declines occurred in the paralyzed muscles of spinal cord-injured subjects (∼60%) than in the muscles of control subjects (∼15%). These data suggest that the decreases in motoneuron excitability for both the spinal cord-injured and control subjects are a result of activity-dependent changes in motoneuron properties that are independent of fatigue-related processes in the muscles

    A systematic method to quantify the presence of cross-talk in stimulus-evoked EMG responses: Implications for TMS studies

    No full text
    Surface electromyography (EMG) responses to noninvasive nerve and brain stimulation are routinely used to provide insight into neural function in humans. However, this could lead to erroneous conclusions if evoked EMG responses contain significant contributions from neighboring muscles (i.e., due to “cross-talk”). We addressed this issue with a simple nerve stimulation method to provide quantitative information regarding the size of EMG cross-talk between muscles of the forearm and hand. Peak to peak amplitude of EMG responses to electrical stimulation of the radial, median, and ulnar nerves (i.e., M-waves) were plotted against stimulation intensity for four wrist muscles and two hand muscles (n = 12). Since electrical stimulation can selectively activate specific groups of muscles, the method can differentiate between evoked EMG arising from target muscles and EMG cross-talk arising from nontarget muscles. Intramuscular EMG responses to nerve stimulation and root mean square EMG produced during maximal voluntary contractions (MVC) of the wrist were recorded for comparison. Cross-talk was present in evoked surface EMG responses recorded from all nontarget wrist (5.05–39.38% Mmax) and hand muscles (1.50–24.25% Mmax) and to a lesser degree in intramuscular EMG signals (∼3.7% Mmax). The degree of cross-talk was comparable for stimulus-evoked responses and voluntary activity recorded during MVC. Since cross-talk can make a considerable contribution to EMG responses in forearm and hand muscles, care is required to avoid misinterpretation of EMG data. The multiple nerve stimulation method described here can be used to quantify the potential contribution of EMG cross-talk in transcranial magnetic stimulation and reflex studies
    corecore