26 research outputs found

    ЦЕНТР КОЛЛЕКТИВНОГО ПОЛЬЗОВАНИЯ «ФИЗИКА И ТЕХНОЛОГИИ НАНОСТРУКТУР»: ФУНКЦИИ И ЗАДАЧИ

    Get PDF
    The role of the Center for collective use of North-Ossetian State University “The physics and technology of nanostructures” in the scientific net of Russian Federation is analyzed. It is shown that adhering to the federal development strategy of CCU net, the North-Ossetian center on the basis of equipment acquiring scientific infrastructure development and attracting youth to science, takes a significant place in realization of priority directions of scientific-technological complex of Russia development, solving the priority scientific tasks, preparation of personnel of higher qualification and creation of the elements of innovative educational environment for higher education

    A Simple Way to Control the Filling Degree of the SiO2/Si Template Pores With Nickel

    Full text link
    The paper demonstrates a simple way to control the filling degree of the pores of a silicon oxide template on silicon substrate with nickel. SiO2/Si template was formed using the swift heavy ion tracks technology, which includes irradiation with high energy ions and chemical transformation of the obtained latent tracks into the pores. The preparation of SiO2(Ni)/Si nanostructures with different filling degree of pores in SiO2 with nickel was performed using the electrodeposition method by changing the duration of the process. A study and analysis of the morphology of SiO2(Ni)/Si nanostructures using scanning electron and atomic force microscopy was carried out to determine the nature of pore filling by metal. © 2019 Elsevier Ltd.The authors acknowledge the support of the work in frames of H2020 - MSCA - RISE2017 - 778308 - SPINMULTIFILM Project and the Scientific-technical program ‘Technology-SG’ [project number 3.1.5.1]

    Preparation of Aluminum–Molybdenum Alloy Thin Film Oxide and Study of Molecular CO + NO Conversion on Its Surface

    No full text
    Adsorption and interaction of carbon monoxide (CO) and nitric oxide (NO) molecules on the surface of bare Al-Mo(110) system and on that obtained by its in situ oxidation have been studied in ultra-high vacuum (base pressure: ca. 10−8 Pa) by means of Auger and X-ray photoelectron spectroscopy (AES, XPS), low energy electron diffraction (LEED), reflection–absorption infrared and thermal desorption spectroscopy (RAIRS, TDS), and by the work function measurements. In order to achieve the Al-Mo(110) alloy the thin aluminum film of a few monolayers thick was in situ deposited onto the Mo(110) crystal and then annealed at 800 K. As a result of Al atoms diffusion into the Mo(110) subsurface region and the chemical reaction, the surface alloy of a hexagonal atomic symmetry corresponding to Al2Mo alloy is formed. The feature of thus formed surface alloy regarding molecular adsorption is that, unlike the bare Mo(110) and Al(111) substrates, on which both CO and NO dissociate, adsorption on the alloy surface is non-dissociative. Moreover, adsorption of carbon monoxide dramatically changes the state of pre-adsorbed NO molecules, displacing them to higher-coordinated adsorption sites and simultaneously tilting their molecular axis closer to the surface plane. After annealing of this coadsorbed system up to 320 K the (CO + NO → CO2 + N) reaction takes place resulting in carbon dioxide desorption into the gas phase and nitriding of the substrate. Such an enhancement of catalytic activity of Mo(110) upon alloying with Al is attributed to surface reconstruction resulting in appearance of new adsorption/reaction centers at the Al/Mo interface (steric effect), as well as to the Mo d-band filling upon alloying (electronic effect). Catalytic activity mounts further when the Al-Mo(110) is in situ oxidized. The obtained Al-Mo(110)-O ternary system is a prototype of a metal/oxide model catalysts featuring the metal oxides and the metal/oxide perimeter interfaces as a the most active reaction sites. As such, this type of low-cost metal alloy oxide models precious metal containing catalysts and can be viewed as a potential substitute to them

    Mechanisms of the Magneto-Optical Activity of Rare-Earth Ions in Rare-Earth Iron Garnet Single Crystals

    No full text
    The magnetic and magneto-optical properties of the typical representatives of three rare-earth iron garnets (RIG) groups: with heavy rare-earth elements Yb, Er, Dy, Tb; with elements from the middle of lanthanide series Gd, Sm, and with light rare-earth element Nd are presented. In contradistinction to other work on the Faraday rotation, which were done only at 1152 nm (8696 cm1cm^{-1}), here we present FR spectra obtained in the energy region 5500-20000 cm1cm^{-1} with high optical resolution. The investigations have been done at temperatures of 5, 82, 130, 295 K using magnetic field up to 25 kOe applied parallel to the [111] crystallographic axis of the crystals. It has been shown that the contribution proportional to the magnetic field and independent of temperature to the mixing of the ground state multiplets exceeds the paramagnetic contribution in YbIG, ErIG, GdIG, SmIG. In Tb and Dy iron garnets contributions from the two mechanisms have opposite signs, and the paramagnetic mechanism gives the greatest contribution to the Faraday rotation. Nevertheless, the contribution of the diamagnetic mechanism, caused by the influence of the exchange field in the iron sublattices on rare-earth ions, is significant, and it is necessary to take it into account. Anomalously large magneto-optical activity is observed in NdYIG. This is the result of contributions of the same sign and approximately equal in magnitude from the paramagnetic and diamagnetic mechanisms

    Mechanisms of the Magneto-Optical Activity of Rare-Earth Ions in Rare-Earth Iron Garnet Single Crystals

    No full text
    The magnetic and magneto-optical properties of the typical representatives of three rare-earth iron garnets (RIG) groups: with heavy rare-earth elements Yb, Er, Dy, Tb; with elements from the middle of lanthanide series Gd, Sm, and with light rare-earth element Nd are presented. In contradistinction to other work on the Faraday rotation, which were done only at 1152 nm (8696 cm1cm^{-1}), here we present FR spectra obtained in the energy region 5500-20000 cm1cm^{-1} with high optical resolution. The investigations have been done at temperatures of 5, 82, 130, 295 K using magnetic field up to 25 kOe applied parallel to the [111] crystallographic axis of the crystals. It has been shown that the contribution proportional to the magnetic field and independent of temperature to the mixing of the ground state multiplets exceeds the paramagnetic contribution in YbIG, ErIG, GdIG, SmIG. In Tb and Dy iron garnets contributions from the two mechanisms have opposite signs, and the paramagnetic mechanism gives the greatest contribution to the Faraday rotation. Nevertheless, the contribution of the diamagnetic mechanism, caused by the influence of the exchange field in the iron sublattices on rare-earth ions, is significant, and it is necessary to take it into account. Anomalously large magneto-optical activity is observed in NdYIG. This is the result of contributions of the same sign and approximately equal in magnitude from the paramagnetic and diamagnetic mechanisms

    Mechanisms of the Magneto-Optical Activity of Rare-Earth Ions in Rare-Earth Iron Garnet Single Crystals

    No full text
    The magnetic and magneto-optical properties of the typical representatives of three rare-earth iron garnets (RIG) groups: with heavy rare-earth elements Yb, Er, Dy, Tb; with elements from the middle of lanthanide series Gd, Sm, and with light rare-earth element Nd are presented. In contradistinction to other work on the Faraday rotation, which were done only at 1152 nm (8696 cm −1 ), here we present FR spectra obtained in the energy region 5500-20000 cm −1 with high optical resolution. The investigations have been done at temperatures of 5, 82, 130, 295 K using magnetic field up to 25 kOe applied parallel to the [111] crystallographic axis of the crystals. It has been shown that the contribution proportional to the magnetic field and independent of temperature to the mixing of the ground state multiplets exceeds the paramagnetic contribution in YbIG, ErIG, GdIG, SmIG. In Tb and Dy iron garnets contributions from the two mechanisms have opposite signs, and the paramagnetic mechanism gives the greatest contribution to the Faraday rotation. Nevertheless, the contribution of the diamagnetic mechanism, caused by the influence of the exchange field in the iron sublattices on rare-earth ions, is significant, and it is necessary to take it into account. Anomalously large magneto-optical activity is observed in NdYIG. This is the result of contributions of the same sign and approximately equal in magnitude from the paramagnetic and diamagnetic mechanisms

    Preparation of Aluminum–Molybdenum Alloy Thin Film Oxide and Study of Molecular CO + NO Conversion on Its Surface

    No full text
    Adsorption and interaction of carbon monoxide (CO) and nitric oxide (NO) molecules on the surface of bare Al-Mo(110) system and on that obtained by its in situ oxidation have been studied in ultra-high vacuum (base pressure: ca. 10−8 Pa) by means of Auger and X-ray photoelectron spectroscopy (AES, XPS), low energy electron diffraction (LEED), reflection–absorption infrared and thermal desorption spectroscopy (RAIRS, TDS), and by the work function measurements. In order to achieve the Al-Mo(110) alloy the thin aluminum film of a few monolayers thick was in situ deposited onto the Mo(110) crystal and then annealed at 800 K. As a result of Al atoms diffusion into the Mo(110) subsurface region and the chemical reaction, the surface alloy of a hexagonal atomic symmetry corresponding to Al2Mo alloy is formed. The feature of thus formed surface alloy regarding molecular adsorption is that, unlike the bare Mo(110) and Al(111) substrates, on which both CO and NO dissociate, adsorption on the alloy surface is non-dissociative. Moreover, adsorption of carbon monoxide dramatically changes the state of pre-adsorbed NO molecules, displacing them to higher-coordinated adsorption sites and simultaneously tilting their molecular axis closer to the surface plane. After annealing of this coadsorbed system up to 320 K the (CO + NO → CO2 + N) reaction takes place resulting in carbon dioxide desorption into the gas phase and nitriding of the substrate. Such an enhancement of catalytic activity of Mo(110) upon alloying with Al is attributed to surface reconstruction resulting in appearance of new adsorption/reaction centers at the Al/Mo interface (steric effect), as well as to the Mo d-band filling upon alloying (electronic effect). Catalytic activity mounts further when the Al-Mo(110) is in situ oxidized. The obtained Al-Mo(110)-O ternary system is a prototype of a metal/oxide model catalysts featuring the metal oxides and the metal/oxide perimeter interfaces as a the most active reaction sites. As such, this type of low-cost metal alloy oxide models precious metal containing catalysts and can be viewed as a potential substitute to them
    corecore