22 research outputs found

    Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment

    Full text link
    A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP)A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP). Modelling of biomass removal indicated that a series of six to eight sonication treatments of 2 min each yielded more than 90% of the attached active biomass. The ATP concentrations in 30 different GAC filters at nine treatment plants in The Netherlands ranged from 25 to 5000 ng ATP cm(-3) GAC, with the highest concentrations at long filter run times and pretreatment with ozone. A similar concentration range was observed in nine rapid sand (RS) filters. ATP concentrations correlated significantly (p I mum diameter is included in these calculations. The quantitative biomass analysis with ATP enables direct comparisons with biofilm concentrations reported for spiral wound membranes used in water treatment, for distribution system pipes and other aquatic environments. (C) 2004 Elsevier Ltd. All rights reserved

    Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment

    Full text link
    AIM: Identification of the predominating cultivable bacteria in granular activated carbon (GAC) filters used in a variety of water treatment plants for selecting representative strains to study the role of bacteria in the removal of dissolved organic matter. METHODS AND RESULTS: Bacterial isolates were collected from 21 GAC filters in nine water treatment plants treating either ground water or surface water with or without oxidative pretreatment. Enrichment of samples in dilute liquid medium improved culturability of the bacteria by approximately log unit, to 9% up to 70% of the total cell counts. Genomic fingerprinting and 16S rDNA sequence analysis revealed that most (68%) of the isolates belonged to the Betaproteobacteria and 25% were identified as Alphaproteobacteria. The number of different genera within the Betaproteobacteria was higher in the GAC filters treating ozonated water than in the filters treating nonozonated water. Polaromonas was observed in nearly all of the GAC filters (86%), and the genera Hydrogenophaga, Sphingomonas and Afipia were observed in 43%, 33% and 29% of the filter beds, respectively. AFLP analysis revealed that the predominating genus Polaromonas included a total of 23 different genotypes. CONCLUSIONS: This study is the first to demonstrate that Polaromonas, which has mainly been observed in ultraoligotrophic freshwater environments, is a common component of the microbial community in GAC filters used in water treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: The predominance of ultraoligotrophic bacteria in the GAC filters indicates that very low concentrations of substrates are available for microbial growth. Polaromonas species are suited for further studies on the nutritional versatility and growth kinetics enabling the modelling of biodegradation processes in GAC filter

    A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions

    Full text link
    Slow sand filtration (SSF) in drinking water production removes pathogenic microorganisms, but detection limits and variable operational conditions complicate assessment of removal efficiency. Therefore, amodel was developed to predict removal ofhuman pathogenic viruses and bacteria as a function of the operational conditions. Pilot plant experiments were conducted, in which bacteriophage MS2 and Escherichia coli WR1 were seeded as model microorganisms for pathogenic viruses and bacteria onto the filters under various temperatures, flowrates, grain sizes and ages of the Schmutzdecke.Removal of MS2 was 0.082e3.3 log10 and that of E. coli WR1 0.94e4.5 log10 by attachment to the sand grains and additionally by processes in theSchmutzdecke. Thecontribution of theSchmutzdecke to the removal ofMS2and E. coliWR1increased with its ageing, with sticking efficiency and temperature, decreased with grain size, and was modelled as a logistic growth function with scale factor f0 and rate coefficient f1. Sticking efficiencies were found to be microorganism and filter specific, but the values of f0 and f1 were independent of microorganism and filter. Cross-validation showed that the model can be used to predict log removal of MS2 and ECWR1 within 0.6 log. Within the range of operational conditions, themodel shows that removal of microorganismsis most sensitive to changes in temperature and age of the Schmutzdecke

    A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions

    Full text link
    Slow sand filtration (SSF) in drinking water production removes pathogenic microorganisms, but detection limits and variable operational conditions complicate assessment of removal efficiency. Therefore, amodel was developed to predict removal ofhuman pathogenic viruses and bacteria as a function of the operational conditions. Pilot plant experiments were conducted, in which bacteriophage MS2 and Escherichia coli WR1 were seeded as model microorganisms for pathogenic viruses and bacteria onto the filters under various temperatures, flowrates, grain sizes and ages of the Schmutzdecke.Removal of MS2 was 0.082e3.3 log10 and that of E. coli WR1 0.94e4.5 log10 by attachment to the sand grains and additionally by processes in theSchmutzdecke. Thecontribution of theSchmutzdecke to the removal ofMS2and E. coliWR1increased with its ageing, with sticking efficiency and temperature, decreased with grain size, and was modelled as a logistic growth function with scale factor f0 and rate coefficient f1. Sticking efficiencies were found to be microorganism and filter specific, but the values of f0 and f1 were independent of microorganism and filter. Cross-validation showed that the model can be used to predict log removal of MS2 and ECWR1 within 0.6 log. Within the range of operational conditions, themodel shows that removal of microorganismsis most sensitive to changes in temperature and age of the Schmutzdecke

    Removal of microorganisms by slow sand filtration

    Full text link
    Het RIVM heeft samen met Kiwa Research en de waterleidingbedrijven Duinwaterbedrijf Zuid-Holland en Waternet gemeten hoe goed ziekteverwekkende wateroverdraagbare micro-organismen worden verwijderd door langzame zandfiltratie, een veel toegepaste techniek in de drinkwaterbereiding. Ongeveer een op de honderd virussen, een op de tienduizend bacterien en minder dan een op de honderdduizend parasitaire protozoa komt nog door de zandfilters. Dit zijn belangrijke gegevens voor de wettelijk verplichte schattingen van risicos op infectie door ziekteverwekkende micro-organismen na drinkwaterconsumptie. Langzame zandfiltratie, een van de laatste stappen in de drinkwaterzuivering, zeeft micro-organismen uit het water. De micro-organismen blijven achter omdat ze niet door porien tussen de zandkorrels passen (zeving) of doordat ze aan zandkorrels hechten. De verwijdering van virussen en bacterien is onderzocht in proefinstallatiefilters, die van protozoa in het laboratorium met kleine zandkolommen. Uit het onderzoek blijkt dat voor bacterien en protozoa zeving effectiever is dan voor de veel kleinere virussen. De concentratie van de micro-organismen in het toegevoerde water is niet van invloed. Ook de effecten van temperatuur en Schmutzdecke zijn onderzocht. De Schmutzdecke is een slijmlaag, die zich langzaam vormt op het zandfilter. Als de Schmutzdecke het zandfilter teveel verstopt, wordt deze afgeschraapt. Bij 9 - 12 graden C heeft de Schmutzdecke geen effect op verwijdering van virussen, maar bacterien worden met Schmutzdecke honderd keer meer verwijderd dan zonder. Bij 14 - 15 graden C worden alle micro-organismen ongeveer tien keer meer verwijderd dan bij 9 - 12 graden C. Na afschrapen is de werking van de Schmutzdecke binnen 53 dagen hersteld. Tenslotte wijst het onderzoek uit dat het zand van de twee onderzochte waterleidingbedrijven nagenoeg even werkzaam is.The removal of waterborne microorganisms by slow sand filtration, regularly applied in Dutch drinking water production as one of the last treatments in drinking water production, was determined. About one per hundred viruses, one per ten thousand bacteria and less than one per hundred thousand parasitic protozoa pass the sand filters. These estimates for removal of pathogens by slow sand filtration constitute some of the critical parameters for the production of safe drinking water as determined by quantitative microbiological risk assessment required by Dutch law. By slow sand filtration, microorganisms are retained because they are not able to pass pores between the sand grains (straining), and by attachment to sand grains. Removal of viruses and bacteria was investigated in pilot plants and that of protozoa in the laboratory with small sand columns. Bacteria and protozoa (1 - 6 mu-m) are strained more effectively than the much smaller viruses (0.02 - 0.2 mu-m). The concentration of the microorganisms in the feeding water of the slow sand filters does not affect removal efficiency. Effects of temperature and the Schmutzdecke were also studied. The Schmutzdecke is a slime layer that gradually forms on top of the sand filter. In operation the Schmutzdecke is scraped off when it clogs the filter too much. At 9 - 12 degrees C, scraping does not affect virus removal, but bacteria are removed a hundred times more when a Schmutzdecke is present than when it is absent. At 14 - 16 degrees C, all microorganisms are removed ten times more than at 9 - 12 degrees C. After scraping off, the efficacy of the Schmutzdecke was restored within 53 days. Finally, it was found that the sand of the two drinking water companies was almost equally effective

    Effect of filtration rate, temperature and grain size on the removal of micro-organisms by slow sand filtration

    Full text link
    Een rekenmodel werd ontwikkeld om de verwijdering van micro-organismen door langzame zandfiltratie, een belangrijke zuiveringstap in de drinkwaterbereiding, te voorspellen onder verschillende bedrijfscondities. Deze bedrijfscondities zijn filtratiesnelheid, temperatuur, korrelgrootte en de Schmutzdecke, een slijmlaag op de zandfilters. De condities kunnen varieren afhankelijk van benodigde productiecapaciteit, weersomstandigheden en het drinkwaterbedrijf. Inzicht in de effecten van deze bedrijfscondities is van belang bij de vertaling tussen bedrijven of van literatuurgegevens naar bedrijf en daardoor ook van belang voor de wettelijk verplichte kwantitatieve microbiologische risicoschattingen. Het model werd ontwikkeld op grond van meetgegevens van voorgaand onderzoek op proefinstallatieschaal. De processen die de verwijdering van micro-organismen door langzame zandfiltratie bepalen, zijn hechting en zeefwerking. Ook het effect van de Schmutzdecke werd geevalueerd. De mate van hechting van een micro-organisme aan het zand is locatiespecifiek. Het model werd vervolgens gebruikt om de verwijdering van bacteriofaag MS2, E. coli en Cryptosporidium bij de vier drinkwaterbedrijven voor de voor deze bedrijven relevante bedrijfscondities te voorspellen en op basis daarvan onderzoeksvoorstellen op proefinstallatieschaal te formuleren om het model te valideren.A mathematical model was developed to predict removal of microorganisms by slow sand filtration, an important treatment in the production of drinking water, under a variety of conditions. These conditions are filtration rate, temperature, grain size and the Schmutzdecke, a slime layer on top of the sand filters. These conditions may vary dependent on required production capacity, weather conditions and the drinking water utility. Insight into the effects of these conditions matter for the translation of data between drinking water utilities and of literature data to utilities and are therefore also of importance for the legally obligated quantitative microbiological risk assessments. The model was developed using experimental data from previous research on pilot plant scale. The processes that determine removal of microorganisms by slow sand filtrations are attachment and straining. Also the effect of the Schmutzdecke was evaluated. The extent of attachment of microorganisms to sand appeared to be utility-specific. The model was applied to predict removal by slow sand filtration of bacteriophage MS2, E. coli and Cryptosporidium for four drinking water utilities under their relevant process conditions and to use these prediction to formulate research proposals on pilot plant scale in order to validate the model.Waterleidingbedrijve
    corecore