75 research outputs found

    Tyrphostin AG 1024 modulates radiosensitivity in human breast cancer cells

    Get PDF
    Insulin-like growth factor-1 (IGF-1) plays an important growth-promoting effect by activating the PI3K/Akt signalling pathway, inhibiting apoptotic pathways and mediating mitogenic actions. Tyrphostin AG 1024, one selective inhibitor of IGF-1R, was used to evaluate effects on proliferation, radiosensitivity, and radiation-induced cell apoptosis in a human breast cancer cell line MCF-7. Exposure to Tyrphostin AG 1024 inhibited proliferation and induced apoptosis in a time-dependent manner, and the degree of growth inhibition for IC20 plus irradiation (4 Gy) was up to 50% compared to the control. Examination of Tyrphostin AG 1024 effects on radiation response demonstrated a marked enhancement in radiosensitivity and amplification of radiation-induced apoptosis. Western blot analysis indicated that Tyrphostin AG 1024-induced apoptosis was associated with a downregulation of expression of phospho-Akt1, increased expression of Bax, p53 and p21, and a decreased expression of bcl-2 expression, especially when combined with irradiation. To our knowledge, this is the first report showing that an IGF-1 inhibitor was able to markedly increase the response of tumour cells to ionizing radiation. These results suggest that Tyrphostin AG 1024 could be used as a potential therapeutic agent in combination with irradiation.   http://www.bjcancer.com © 2001 Cancer Research Campaig

    The plant specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis

    Get PDF
    Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA. CYCB1; 1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR

    What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine?

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription protein Tat is an important factor in viral pathogenesis. In addition to its function as the key trans-activator of viral transcription, Tat is also secreted by the infected cell and taken up by neighboring cells where it has an effect both on infected and uninfected cells. In this review we will focus on the relationship between the structure of the Tat protein and its function as a secreted factor. To this end we will summarize some of the exogenous functions of Tat that have been implicated in HIV-1 pathogenesis and the impact of structural variations and viral subtype variants of Tat on those functions. Finally, since in some patients the presence of Tat-specific antibodies or CTL frequencies are associated with slow or non-progression to AIDS, we will also discuss the role of Tat as a potential vaccine candidate, the advances made in this field, and the importance of using a Tat protein capable of eliciting a protective or therapeutic immune response to viral challenge

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF

    Combined radiation sensitizing and anti-angiogenic effects of ionizing radiation and the protease inhibitor ritonavir in a head and neck carcinoma model.

    Full text link
    Ritonavir, a protease inhibitor, has been successfully applied in the treatment of HIV infection. Reports of dramatic improvement of AIDS-related cancers, such as primary central system lymphoma after radiation therapy as well as Kaposi's sarcoma, led to the recent discovery of the "non viral" antitumor activity of HIV protease inhibitors. This study was designed to detect the antitumor effect of Ritonavir when combined with ionizing radiation both in vitro and in vivo in the HEP-2 head and neck carcinoma model. Inhibition of tumor growth was observed when mice were treated with Ritonavir alone and this effect was enhanced when combined with ionizing radiation. No adverse effect or significant toxicity in the hosts' body weights was seen between the different treatment and control groups throughout the experiments. A marked antiproliferation effect of the combination was observed in vitro. A marked reduction of angiogenesis was detected within the tumor sections from the Ritonavir combined with irradiation group as compared with the Ritonavir or irradiation alone groups. Western blot analysis showed that apoptosis was induced by an increased expression of Bax and decreased expression of Bcl-2 after treatment with Ritonavir and ionizing radiation. Thus, the antitumor effect of the latter combination is associated with the enhancement of radiation-induced apoptosis and inhibition of angiogenesis. These data suggested that Ritonavir could clinically improve the tumor response to radiation therapy, especially in head and neck carcinoma

    Cooperative effect of roscovitine and irradiation targets angiogenesis and induces vascular destabilization in human breast carcinoma

    Full text link
    International audienceAngiogenesis is considered as an essential process for tumour development and invasion. Previously, we demonstrated that cyclin-dependent kinase inhibition by roscovitine induces a radiosensitization and a synergistic antitumoral effect in human carcinoma but its effect on the microenvironment and tumour angiogenesis remains unknown. Here, we investigated the effect of the combination roscovitine and ionizing radiation (IR) on normal cells in vitro and on tumour angiogenesis in MDA-MB 231 tumour xenografts. We observed that the combination roscovitine and IR induced a marked reduction of angiogenic hot spot and microvascular density in comparison with IR or roscovitine treatments alone. The Ang-2/Tie-2 ratio was increased in presence of reduced vascular endothelial growth factor level suggesting vessel destabilization. In vitro, no radiosensitization effect of roscovitine was found in endothelial, fibroblast, and keratinocyte cells. IR potentiated the antiproliferative effect of roscovitine without inducing apoptosis in endothelial cells. Roscovitine decreased IR-stimulated vascular endothelial growth factor secretion of MDA-MB 231 and endothelial cells. A reduction in the endothelial cells invasion and the capillary-like tube formation in Matrigel were observed following the combination roscovitine and IR. This combined treatment targets angiogenesis resulting in microvessel destabilization without inducing normal cell toxicity. © 2008 Blackwell Publishing Ltd
    corecore