82 research outputs found

    The Omega-3 fatty acid docosahexaenoic acid modulates inflammatory mediator release in human alveolar cells exposed to bronchoalveolar lavage fluid of ards patients

    Get PDF
    Background. This study investigated whether the 1 : 2 ω-3/ω-6 ratio may reduce proinflammatory response in human alveolar cells (A549) exposed to an ex vivo inflammatory stimulus (bronchoalveolar lavage fluid (BALF) of acute respiratory distress syndrome (ARDS) patients). Methods. We exposed A549 cells to the BALF collected from 12 ARDS patients. After 18 hours, fatty acids (FA) were added as docosahexaenoic acid (DHA, ω-3) and arachidonic acid (AA, ω-6) in two ratios (1 : 2 or 1 : 7). 24 hours later, in culture supernatants were evaluated cytokines (TNF-α, IL-6, IL-8, and IL-10) and prostaglandins (PGE2 and PGE3) release. The FA percentage content in A549 membrane phospholipids, content of COX-2, level of PPARγ, and NF-κB binding activity were determined. Results. The 1 : 2 DHA/AA ratio reversed the baseline predominance of ω-6 over ω-3 in the cell membranes (P < 0.001). The proinflammatory cytokine release was reduced by the 1 : 2 ratio (P < 0.01 to <0.001) but was increased by the 1 : 7 ratio (P < 0.01). The 1 : 2 ratio reduced COX-2 and PGE2 (P < 0.001) as well as NF-κB translocation into the nucleus (P < 0.01), while it increased activation of PPARγ and IL-10 release (P < 0.001). Conclusion. This study demonstrated that shifting the FA supply from ω-6 to ω-3 decreased proinflammatory mediator release in human alveolar cells exposed to BALF of ARDS patients

    Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    Get PDF
    Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s). Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis

    Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis

    Get PDF
    During chronic liver disease (CLD) progression, hepatic myofibroblasts (MFs) represent a unique cellular phenotype that plays a critical role in driving liver fibrogenesis and then fibrosis. Although they could originate from different cell types, MFs exhibit a rather common pattern of pro-fibrogenic phenotypic responses, which are mostly elicited or sustained both by oxidative stress and reactive oxygen species (ROS) and several mediators (including growth factors, cytokines, chemokines, and others) that often operate through the up-regulation of the intracellular generation of ROS. In the present review, we will offer an overview of the role of MFs in the fibrogenic progression of CLD from different etiologies by focusing our attention on the direct or indirect role of ROS and, more generally, oxidative stress in regulating MF-related phenotypic responses. Moreover, this review has the purpose of illustrating the real complexity of the ROS modulation during CLD progression. The reader will have to keep in mind that a number of issues are able to affect the behavior of the cells involved: a) the different concentrations of reactive species, b) the intrinsic state of the target cells, as well as c) the presence of different growth factors, cytokines, and other mediators in the extracellular microenvironment or of other cellular sources of ROS

    Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid: Effect on tumor cell growth and viability

    Get PDF
    One of the goals for the development of more effective cancer therapies with reduced toxic side effects is the optimization of innovative treatments to selectively kill tumor cells. The use of nanovectors loaded with targeted therapeutic payloads is one of the most investigated strategies. In this paper superparamagnetic iron oxide nanoparticles (SPIONs) coated by a silica shell or uncoated, were functionalized with single-layer and bi-layer conjugated linoleic acid (CLA). Silica was used to protect the magnetic core from oxidation, improve the stability of SPIONs and tailor their surface reactivity. CLA was used as novel grafting biomolecule for its anti-tumor activity and to improve particle dispersibility. Mouse breast cancer 4T1 cells were treated with these different SPIONs. SPIONs functionalized with the highest quantity of CLA and coated with silica shell were the most dispersed. Cell viability was reduced by SPIONs functionalized with CLA in comparison with cells which were untreated or treated with SPIONs without CLA. As regards the types of SPIONs functionalized with CLA, the lowest viability was observed in cells treated with uncoated SPIONs with the highest quantity of CLA. In conclusion, the silica shell free SPIONs functionalized with the highest amount of CLA can be suggested as therapeutic carriers because they have the best dispersion and ability to decrease 4T1 cell viability
    corecore